scholarly journals Protective Efficacy of a Toxoplasma gondii Rhoptry Protein 13 Plasmid DNA Vaccine in Mice

2012 ◽  
Vol 19 (12) ◽  
pp. 1916-1920 ◽  
Author(s):  
Pei-Yuan Wang ◽  
Zi-Guo Yuan ◽  
Eskild Petersen ◽  
Jie Li ◽  
Xiu-Xiang Zhang ◽  
...  

ABSTRACTToxoplasma gondiiis an obligate intracellular parasite infecting humans and other warm-blooded animals, resulting in serious public health problems and economic losses worldwide. Rhoptries are involved inT. gondiiinvasion and host cell interaction and have been implicated as important virulence factors. In the present study, a DNA vaccine expressing rhoptry protein 13 (ROP13) ofT. gondiiinserted into eukaryotic expression vector pVAX I was constructed, and the immune protection it induced in Kunming mice was evaluated. Kunming mice were immunized intramuscularly with pVAX-ROP13 and/or with interleukin-18 (IL-18). Then, we evaluated the immune response using a lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged with the virulentT. gondiiRH strain (type I) and the cyst-forming PRU strain (type II). The results showed that pVAX-ROP13 alone or with pVAX/IL-18 induced a high level of specific anti-T. gondiiantibodies and specific lymphocyte proliferative responses. Coinjection of pVAX/IL-18 significantly increased the production of gamma interferon (IFN-γ), IL-2, IL-4, and IL-10. Further, challenge experiments showed that coimmunization of pVAX-ROP13 with pVAX/IL-18 significantly (P< 0.05) increased survival time (32.3 ± 2.7 days) compared with pVAX-ROP13 alone (24.9 ± 2.3 days). Immunized mice challenged withT. gondiicysts (strain PRU) had a significant reduction in the number of brain cysts, suggesting that ROP13 could trigger a strong humoral and cellular response againstT. gondiicyst infection and that it is a potential vaccine candidate against toxoplasmosis, which provided the foundation for further development of effective vaccines againstT. gondii.

2014 ◽  
Vol 21 (7) ◽  
pp. 924-929 ◽  
Author(s):  
Nian-Zhang Zhang ◽  
Si-Yang Huang ◽  
Ying Xu ◽  
Jia Chen ◽  
Jin-Lei Wang ◽  
...  

ABSTRACTToxoplasma gondiican cause serious public health problems and economic losses worldwide. Calcium-dependent protein kinases (CDPKs) are key mediators ofT. gondiisignaling pathways and are implicated as important virulence factors. In the present study, we cloned a novelT. gondiiCDPK gene, named TgCDPK5, and constructed the eukaryotic expression vector pVAX-CDPK5. Then, we evaluated the immune protection induced by pVAX-CDPK5 in Kunming mice. After injection of pVAX-CDPK5 intramuscularly, immune responses, determined with lymphoproliferative assays and cytokine and antibody measurements, were monitored, and mouse survival times and brain cyst formation were evaluated following challenges with theT. gondiiRH strain (genotype I) and the PRU strain (genotype II). pVAX-CDPK5 effectively induced immune responses with increased specific antibodies, a predominance of IgG2a production, and a strong lymphocyte proliferative response. The levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), and IL-12(p70) and the percentages of CD3+CD4+and CD3+CD8+cells in mice vaccinated with pVAX-CDPK5 were significantly increased. However, IL-4 and IL-10 were not produced in the vaccinated mice. These results demonstrate that pVAX-CDPK5 can elicit strong humoral and cellular Th1 immune responses. The survival time of immunized mice challenged with theT. gondiiRH strain (8.67 ± 4.34 days) was slightly, but not significantly, longer than that in the control groups within 7 days (P> 0.05). The numbers of brain cysts in the mice in the pVAX-CDPK5 group were reduced by ∼40% compared with those in the control groups (P< 0.05), which provides a foundation for the further development of effective subunit vaccines againstT. gondii.


2012 ◽  
Vol 19 (5) ◽  
pp. 666-674 ◽  
Author(s):  
Juan-Hua Quan ◽  
Jia-Qi Chu ◽  
Hassan Ahmed Hassan Ahmed Ismail ◽  
Wei Zhou ◽  
Eun-Kyeong Jo ◽  
...  

ABSTRACTToxoplasma gondiiis distributed worldwide and infects most species of warm-blooded animals, including humans. The heavy incidence and severe or lethal damage caused byT. gondiiinfection clearly indicates the need for the development of a vaccine. To evaluate the protective efficacy of a multiantigenic DNA vaccine expressing GRA7 and ROP1 ofT. gondiiwith or without a plasmid encoding murine interleukin-12 (pIL12), we constructed DNA vaccines using the eukaryotic plasmids pGRA7, pROP1, and pGRA7-ROP1. Mice immunized with pGRA7, pROP1, or pGRA7-ROP1 showed significantly increased serum IgG2a titers; production of gamma interferon (IFN-γ), IL-10, and tumor necrosis factor alpha (TNF-α);in vitroT cell proliferation; and survival, as well as decreased cyst burdens in the brain, compared to mice immunized with either the empty plasmid, pIL12, or vector with pIL12 (vector+pIL12). Moreover, mice immunized with the multiantigenic DNA vaccine pGRA7-ROP1 had higher IgG2a titers, production of IFN-γ and TNF-α, survival time, and cyst reduction rate compared to those of mice vaccinated with either pGRA7 or pROP1 alone. Furthermore, mice immunized with either a pGRA7-ROP1+pIL12 or a single-gene vaccine combined with pIL12 showed greater Th1 immune response and protective efficacy than the single-gene-vaccinated groups. Our data suggest that the multiantigenic DNA antigen pGRA7-ROP1 was more effective in stimulating host protective immune responses than separately injected single antigens, and that IL-12 serves as a good DNA adjuvant.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


2012 ◽  
Vol 19 (5) ◽  
pp. 723-730 ◽  
Author(s):  
Xiaoman Li ◽  
Wei Xu ◽  
Sidong Xiong

ABSTRACTTuberculosis (TB) caused byMycobacterium tuberculosisremains a major infectious disease worldwide. Moreover, latentM. tuberculosisinfection is more likely to progress to active TB and eventually leads to death when HIV infection is involved. Thus, it is urgent to develop a novel TB vaccine with immunogenicity to bothM. tuberculosisand HIV. In this study, four uncharacterized T cell epitopes from MPT64, Ag85A, Ag85B, and TB10.4 antigens ofM. tuberculosiswere predicted, and HIV-1-derived p24, an immunodominant protein that can induce protective responses to HIV-1, was used as an immunogenic backbone.M. tuberculosisepitopes were incorporated separately into the gene backbone of p24, forming a pP24-Mtb DNA vaccine. We demonstrated that pP24-Mtb immunization induced a strongM. tuberculosis-specific cellular response as evidenced by T cell proliferation, cytotoxicity, and elevated frequency of gamma interferon (IFN-γ)-secreting T cells. Interestingly, a p24-specific cellular response and high levels of p24-specific IgG were also induced by pP24-Mtb immunization. When the protective effect was assessed after mycobacterial challenge, pP24-Mtb vaccination significantly reduced tissue bacterial loads and profoundly attenuated the mycobacterial infection-related lung inflammation and injury. Our findings demonstrated that the pP24-Mtb tuberculosis vaccine confers effective protection against mycobacterial challenge with simultaneously elicited robust immune responses to HIV-1, which may provide clues for developing novel vaccines to prevent dual infections.


Author(s):  
Sonia Gumes Andrade ◽  
Rozália Figueira Campos ◽  
Karina Souza Castro Sobral ◽  
Juracy Barbosa Magalhães ◽  
Ricardo S. Pereira Guedes ◽  
...  

Reinfections with Trypanosoma cruzi in patients from endemic areas have been claimed to be an aggravation factor of cardiac manifestations in Chagas' disease. In the present study, the influence of triple infections with strains of different biodemes, on cardiac and skeletal muscle lesions was experimentally tested. Fifty eight mice chronically infected with the Colombian strain (Biodeme Type III) were successively reinfected as follows: 1st group - reinfected with 21 SF strain (Type II) followed by Y strain (Type I ); 2nd - group reinfections with Y strain followed by 21SF strain. Isoenzyme analysis of parasites from hemocultures obtained from triple infected mice, revealed the patterns of three distinct zymodemes in the same animal. Each Trypanosoma cruzi strain was reisolated after four passages in mice on either the 7th, 14th or 30th day after inoculation with the blood of triple infected mice. Histopathology results demonstrated a significant exacerbation of cardiac and skeletal muscle inflammatory lesions, confirmed by morphometric evaluation, in mice with triple infection. No aggravation of parasitism was detected. The possibility of an enhancement of cellular response in the triple infected mice is suggested.


2020 ◽  
Vol 8 (3) ◽  
pp. 352 ◽  
Author(s):  
Qin-Li Liang ◽  
Li-Xiu Sun ◽  
Hany M. Elsheikha ◽  
Xue-Zhen Cao ◽  
Lan-Bi Nie ◽  
...  

In the present study, a dense granule protein 17 (gra17) and novel putative transporter (npt1) double deletion mutant of Toxoplasma gondii RH strain was engineered. The protective efficacy of vaccination using RHΔgra17Δnpt1 tachyzoites against acute, chronic, and congenital toxoplasmosis was studied in a mouse model. Immunization using RHΔgra17Δnpt1 induced a strong humoral and cellular response, as indicated by the increased levels of anti-T. gondii specific IgG, interleukin 2 (IL-2), IL-10, IL-12, and interferon-gamma (IFN-γ). Vaccinated mice were protected against a lethal challenge dose (103 tachyzoites) of wild-type homologous (RH) strain and heterologous (PYS and TgC7) strains, as well as against 100 tissue cysts or oocysts of Pru strain. Vaccination also conferred protection against chronic infection with 10 tissue cysts or oocysts of Pru strain, where the numbers of brain cysts in the vaccinated mice were significantly reduced compared to those detected in the control (unvaccinated + infected) mice. In addition, vaccination protected against congenital infection with 10 T. gondii Pru oocysts (administered orally on day 5 of gestation) as shown by the increased litter size, survival rate and the bodyweight of pups born to vaccinated dams compared to those born to unvaccinated + infected dams. The brain cyst burden of vaccinated dams was significantly lower than that of unvaccinated dams infected with oocysts. Our data show that T. gondii RHΔgra17Δnpt1 mutant strain can protect mice against acute, chronic, and congenital toxoplasmosis by balancing inflammatory response with immunogenicity.


2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Louis-Philippe Leroux ◽  
Julie Lorent ◽  
Tyson E. Graber ◽  
Visnu Chaparro ◽  
Laia Masvidal ◽  
...  

ABSTRACT The intracellular parasite Toxoplasma gondii promotes infection by targeting multiple host cell processes; however, whether it modulates mRNA translation is currently unknown. Here, we show that infection of primary murine macrophages with type I or II T. gondii strains causes a profound perturbation of the host cell translatome. Notably, translation of transcripts encoding proteins involved in metabolic activity and components of the translation machinery was activated upon infection. In contrast, the translational efficiency of mRNAs related to immune cell activation and cytoskeleton/cytoplasm organization was largely suppressed. Mechanistically, T. gondii bolstered mechanistic target of rapamycin (mTOR) signaling to selectively activate the translation of mTOR-sensitive mRNAs, including those with a 5′-terminal oligopyrimidine (5′ TOP) motif and those encoding mitochondrion-related proteins. Consistent with parasite modulation of host mTOR-sensitive translation to promote infection, inhibition of mTOR activity suppressed T. gondii replication. Thus, selective reprogramming of host mRNA translation represents an important subversion strategy during T. gondii infection.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Zhicheng Dou ◽  
Olivia L. McGovern ◽  
Manlio Di Cristina ◽  
Vern B. Carruthers

ABSTRACT The protozoan parasite Toxoplasma gondii resides within a nonfusogenic vacuole during intracellular replication. Although the limiting membrane of this vacuole provides a protective barrier to acidification and degradation by lysosomal hydrolases, it also physically segregates the parasite from the host cytosol. Accordingly, it has been suggested that T. gondii acquires material from the host via membrane channels or transporters. The ability of the parasite to internalize macromolecules via endocytosis during intracellular replication has not been tested. Here, we show that Toxoplasma ingests host cytosolic proteins and digests them using cathepsin L and other proteases within its endolysosomal system. Ingestion was reduced in mutant parasites lacking an intravacuolar network of tubular membranes, implicating this apparatus as a possible conduit for trafficking to the parasite. Genetic ablation of proteins involved in the pathway is associated with diminished parasite replication and virulence attenuation. We show that both virulent type I and avirulent type II strain parasites ingest and digest host-derived protein, indicating that the pathway is not restricted to highly virulent strains. The findings provide the first definitive evidence that T. gondii internalizes proteins from the host during intracellular residence and suggest that protein digestion within the endolysosomal system of the parasite contributes to toxoplasmosis. IMPORTANCE Toxoplasma gondii causes significant disease in individuals with weak immune systems. Treatment options for this infection have drawbacks, creating a need to understand how this parasite survives within the cells it infects as a prelude to interrupting its survival strategies. This study reveals that T. gondii internalizes proteins from the cytoplasm of the cells it infects and degrades such proteins within a digestive compartment within the parasite. Disruption of proteins involved in the pathway reduced parasite replication and lessened disease severity. The identification of a novel parasite ingestion pathway opens opportunities to interfere with this process and improve the outcome of infection.


Sign in / Sign up

Export Citation Format

Share Document