scholarly journals Mcp4, a Meiotic Coiled-Coil Protein, Plays a Role in F-Actin Positioning during Schizosaccharomyces pombe Meiosis

2007 ◽  
Vol 6 (6) ◽  
pp. 971-983 ◽  
Author(s):  
Ayami Ohtaka ◽  
Daisuke Okuzaki ◽  
Takamune T. Saito ◽  
Hiroshi Nojima

ABSTRACT Some meiosis-specific proteins of Schizosaccharomyces pombe harbor coiled-coil motifs and play essential roles in meiotic progression. Here we describe Mcp4, a novel meiosis-specific protein whose expression is abruptly induced at the horsetail phase and which remains expressed until sporulation is finished. Fluorescence microscopic analysis revealed that Mcp4 alters its subcellular localization during meiosis in a manner that partially resembles the movement of F-actin during meiosis. Mcp4 and F-actin never colocalize; rather, they are located in a side-by-side manner. When forespore membrane formation begins at metaphase II, the Mcp4 signals assemble at the lagging face of the dividing nuclei. At this stage, they are sandwiched between F-actin and the nucleus. Mcp4, in turn, appears to sandwich F-actin with Meu14. In mcp4Δ cells at anaphase II, the F-actin, which is normally dumbbell-shaped, adopts an abnormal balloon shape. Spores of mcp4Δ cells were sensitive to NaCl, although their shape and viability were normal. Taken together, we conclude that Mcp4 plays a role in the accurate positioning of F-actin during S. pombe meiosis.

1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


Author(s):  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
Jayawant N. Mandrekar ◽  
Cody Fisher ◽  
Kerryl E. Greenwood-Quaintance ◽  
...  

Wound infections are caused by bacteria and/or fungi. The presence of fungal biofilms in wound beds presents a unique challenge, as fungal biofilms may be difficult to eradicate. The goal of this work was to assess the in vitro anti-biofilm activity of a H 2 O 2 -producing electrochemical bandage (e-bandage) against 15 yeast isolates representing commonly-encountered species. Time-dependent decreases in viable biofilm CFU counts of all isolates tested were observed, resulting in no visible colonies with 48 hours of exposure by plate culture. Fluorescence microscopic analysis showed extensive cell membrane damage of biofilm cells after e-bandage treatment. Reductions in intracellular ATP levels of yeast biofilm cells were recorded post e-bandage treatment. Our results suggest that exposure to H 2 O 2 -producing e-bandages reduce in vitro viable cell counts of yeast biofilms, making this a potential new topical treatment approach for fungal wound infections.


2016 ◽  
Vol 17 (3) ◽  
pp. 129-131 ◽  
Author(s):  
Kathryn Spiers ◽  
Tina Cardamone ◽  
John B. Furness ◽  
Jonathan C. M. Clark ◽  
James F. Patrick ◽  
...  

1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


2021 ◽  
Author(s):  
Cian Duggan ◽  
Eleonora Moratto ◽  
Zachary Savage ◽  
Eranthika Hamilton ◽  
Hiroaki Adachi ◽  
...  

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet the subcellular localization of NLRs pre- and post- activation during pathogen infection remains poorly known. Here we show that NRC4, from the 'NRC' solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extra-haustorial membrane (EHM), presumably to mediate response to perihaustorial effectors, that are recognized by NRC4-dependent sensor NLRs. However not all NLRs accumulate at the EHM, as the closely related helper NRC2, and the distantly related ZAR1, did not accumulate at the EHM. NRC4 required an intact N- terminal coiled coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that post-activation, NRC4 probably undergoes a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection however, NRC4 formed puncta mainly at the EHM and to a lesser extent at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


2021 ◽  
Author(s):  
Lindsey A Ebke ◽  
Satyabrata Sinha ◽  
Gayle JT Pauer ◽  
Stephanie A Hagstrom

Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, sev-eral OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach was to physically iso-late Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two dis-tinct interactomes. We report the identification of: 1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), 2) a synaptic-specific interaction be-tween Tulp1 and the scaffold protein Ribeye, and 3) an interaction between Tulp1 and the cyto-skeletal protein Microtubule-associated protein 1B (MAP1B) in both compartments. Immuno-localization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.


2020 ◽  
Vol 48 (12) ◽  
pp. 6431-6444
Author(s):  
Deepak K Agrawal ◽  
Rebecca Schulman

Abstract While many methods are available to measure the concentrations of proteins in solution, the development of a method to quantitatively report both increases and decreases in different protein concentrations in real-time using changes in the concentrations of other molecules, such as DNA outputs, has remained a challenge. Here, we present a biomolecular reaction process that reports the concentration of an input protein in situ as the concentration of an output DNA oligonucleotide strand. This method uses DNA oligonucleotide aptamers that bind either to a specific protein selectively or to a complementary DNA oligonucleotide reversibly using toehold-mediated DNA strand-displacement. It is possible to choose the sequence of output strand almost independent of the sensing protein. Using this strategy, we implemented four different exchange processes to report the concentrations of clinically relevant human α-thrombin and vascular endothelial growth factor using changes in concentrations of DNA oligonucleotide outputs. These exchange processes can operate in tandem such that the same or different output signals can indicate changes in concentration of distinct or identical input proteins. The simplicity of our approach suggests a pathway to build devices that can direct diverse output responses in response to changes in concentrations of specific proteins.


Blood ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 82-84 ◽  
Author(s):  
DJ Doyle ◽  
CN Chesterman ◽  
JF Cade ◽  
JR McGready ◽  
GC Rennie ◽  
...  

Abstract Relationships between 51Cr platelet survival and plasma concentrations of beta-thromboglobulin (betaTG) and platelet factor 4 (PF4) were analyzed in 91 studies of patients with coronary artery disease. betaTG was significantly correlated with platelet life-span, turnover, and the number of hits in the multiple hit model. PF4 was significantly correlated with life-span and turnover. The most significant relationship involving platelet-specific protein concentrations and life-span estimates was between betaTG and life-span estimated using the multiple hit model (r = -0.39, p less than 0.001). There was a high correlation between betaTG and PF4 (r = 0.62, p less than 0.001), and no improvement could be obtained by combining the measurements of the two proteins in any regression with life-span or turnover. The results indicate that the patients with the shortest platelet survival time in this group tended to have the highest plasma concentration of betaTG and PF4 and thus probably increased in vivo release of betaTG and PF4. They strengthen the claim that these platelet-specific proteins may be indicators of platelet involvement in disease.


1983 ◽  
Vol 96 (1) ◽  
pp. 63-67 ◽  
Author(s):  
K S Stenn ◽  
J A Madri ◽  
T Tinghitella ◽  
V P Terranova

To test the possibility that epidermal cells use a common basement membrane protein whenever they spread, in vitro experiments were conducted using trypsin-dissociated guinea pig epidermal cells and the following proteins: human serum, bovine serum albumin, serum fibronectin, Type IV collagen, laminin, and epibolin (a recently described serum glycoprotein which supports epidermal cell spreading; Stenn, K.S., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:6907.). When the cells were added to media containing the specific proteins, all the tested proteins, except for serum albumin, supported cell spreading. Added to protein-coated substrates in defined media, the cells spread on fibronectin, epibolin, and laminin-Type IV collagen, but not on albumin or whole serum. In none of these experiments were the results qualitatively affected by the presence of cycloheximide. Antibodies to a specific protein blocked cell spreading on that protein but not on the other active proteins, e.g. whereas antibodies to epibolin blocked cell spreading on epibolin, they did not affect spreading on fibronectin, collagen, or laminin. In a second assay in which the cells were allowed to adhere to tissue culture plastic before the protein-containing medium was added, the cells spread only if the medium contained epibolin. Moreover, under these conditions the spreading activity of whole serum and plasma was neutralized by antiepibolin antibodies. These results support the conclusion that dissociated epidermal cells possess multiple spreading modes which depend, in part, on the proteins of the substrate, proteins of the medium, and the sequence of cell adhesion and protein exposure.


Sign in / Sign up

Export Citation Format

Share Document