scholarly journals Overexpression of Mitochondrial Leishmania major Ascorbate Peroxidase Enhances Tolerance to Oxidative Stress-Induced Programmed Cell Death and Protein Damage

2009 ◽  
Vol 8 (11) ◽  
pp. 1721-1731 ◽  
Author(s):  
Subhankar Dolai ◽  
Rajesh K. Yadav ◽  
Swati Pal ◽  
Subrata Adak

ABSTRACT Ascorbate peroxidase from Leishmania major (LmAPX) is one of the key enzymes for scavenging of reactive oxygen species generated from the mitochondrial respiratory chain. We have investigated whether mitochondrial LmAPX has any role in oxidative stress-induced apoptosis. The measurement of reduced glutathione (GSH) and protein carbonyl contents in cellular homogenates indicates that overexpression of LmAPX protects Leishmania cells against depletion of GSH and oxidative damage of proteins by H2O2 or camptothecin (CPT) treatment. Confocal microscopy and fluorescence spectroscopy data have revealed that the intracellular elevation of Ca2+ attained by the LmAPX-overexpressing cells was always below that attained in control cells. Flow cytometry assay data and confocal microscopy observation strongly suggest that LmAPX overexpression protects cells from H2O2-induced mitochondrial membrane depolarization as well as ATP decrease. Western blot data suggest that overexpression of LmAPX shields against H2O2- or CPT-induced cytochrome c and endonuclease G release from mitochondria and subsequently their accumulation in the cytoplasm. Caspase activity assay by flow cytometry shows a lower level of caspase-like protease activity in LmAPX-overexpressing cells under apoptotic stimuli. The data on phosphatidylserine exposed on the cell surface and DNA fragmentation results show that overexpression of LmAPX renders the Leishmania cells more resistant to apoptosis provoked by H2O2 or CPT treatment. Taken together, these results indicate that constitutive overexpression of LmAPX in the mitochondria of L. major prevents cells from the deleterious effects of oxidative stress, that is, mitochondrial dysfunction and cellular death.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1356-1356
Author(s):  
Wenli Liu ◽  
Yueqin Liu ◽  
Ruihong Wang ◽  
Cuiling Li ◽  
Chuxia Deng ◽  
...  

Abstract Abstract 1356 Poster Board I-378 Introduction Olfactomedin 4 (OLFM4), also called hGC-1, GW112 and pDP4, was first identified and specifically expressed in hematopoietic myeloid cells. OLFM4 expression in myeloid cells is regulated by transcription factors, PU1 and NF-κB. It has significant homology in its C-terminal domain with other olfactomedin-related proteins. OLFM4 encodes a 510 amino acid N-linked glycoprotein. The exact biological function of OLFM4, especially in neutrophils, is currently undefined. To characterize the in vivo function of OLFM4, we generated OLFM4 deficient mice (OLFM4-/-) and investigated its potential role in neutrophil functioins. Results 1) In this study, we showed that OLFM4 is a secreted glycoprotein and is also localized in the mitochondria, cytoplasm and cell membrane fractions of neutrophils. We demonstrated that OLFM4 interacts with GRIM-19 (Genes associated with Retinoid-IFN-induced Mortality-19), an apoptosis related protein, in the neutrophil mitochondria using co-immuoprecipitation assay. GRIM-19 is a subunit of complex I of mitochondrial respiratory chain and is essential for maintenance of mitochondrial membrane potential. Our result suggests that OLFM4 appears to be a novel component of complex I of mitochondrial respiratory chain and may be involved in regulation of mitochondrial membrane potential. 2) Mice heterozygous (OLFM4+/-) and homozygous (OLFM4-/-) for the null mutation in OLFM4 appeared to have normal development, fertility, and viability relative to wild-type (WT) mice. Whole blood analysis, differential leukocyte counts, blood chemistry and bone marrow smears were normal in OLFM4-/- mice, suggesting that OLFM4 is not essential for normal development and hematopoiesis in mice. 3) In response to LPS, fMLP and E.coli bacteria challenge, neutrophils from OLFM4-/- mice showed significantly reduced superoxide (O2−) and hydrogen peroxide (H2O2) production compared with WT mice. These results suggest that OLFM4 is an essential component to mediate O2− and H2O2 production in the neutrophil mitochondria under inflammation stimuli. 4) Exogenous H2O2 induced neutrophil apoptosis in a time and dose dependent manner in WT mice, but this induction of apoptosis was significantly reduced in OLFM4-/- mice. This result suggests that OLFM4 sensitizes and mediates H2O2-induced apoptosis in neutrophils. 5) Furthermore, we demonstrated that H2O2-stimulated mitochondrial membrane permeability reduction and caspase-3 and caspase-9 activation were inhibited in the neutrophils of OLFM4-/- mice. This result confirmed our hypothesis that OLFM4 may be involved in maintenance of mitochondrial membrane potential and suggests that OLFM4 may have opposite role as GRIM-19. 6) Moreover, Bax association with mitochondria and the cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO in response to H2O2 were inhibited in the neutrophils of OLFM4-/- mice. Conclusion Our results suggest: 1) OLFM4 has multiple subcellular localizations including mitochondria, cytoplasm, and cell membrane in neutrophils. The interaction of OLFM4 with GRIM-19 in the mitochondria suggests that OLFM4 is novel component of complex I of mitochondrial respiratory chain in the mitochondria of neutrophils, 2) OLFM4 is a novel mitochondrial molecule that is essential for O2− and H2O2 production in the neutrophils in the presence of inflammation stimuli, 3) Loss of OLFM4 in neutrophils does not trigger spontaneous apoptosis. However, OLFM4 sensitizes oxidative stress-induced apoptosis in mouse neutrophils. OLFM4 is involved in the regulation of mitochondria membrane potential and sensitizes cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO and caspases-3 and caspase-9 mediated apoptosis in the presence of oxidative stress. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Gökhan Ertaş ◽  
Ertan Ural ◽  
Dilek Ural ◽  
Ayça Aksoy ◽  
Güliz Kozdağ ◽  
...  

Aim. Mesenchymal stem cells (MSCs) isolated from human bone marrow (hBM) and adipose tissue (hAT) are perceived as attractive sources of stem cells for cell therapy. The aim of this study was to compare MSCs from hBM and hAT for their immunocytochemistry staining and resistance to in vitro apoptosis. Methods. In our study, we investigated the antiapoptotic ability of these MSCs toward oxidative stress induced by hydrogen peroxide (H2O2) and serum deprivation. Results were assessed by MTT and flow cytometry. All experiments were repeated a minimum of three times. Results. Flow cytometry and MTT analysis revealed that hAT-MSCs exhibited a higher resistance toward H2O2-induced apoptosis (n=3, hBM-hAT viability H2O2  58.43±1.24–73.02±1.44, P<0.02) and to serum-deprivation-induced apoptosis at days 1 and 4 than the hBM-MSCs (n=3, hAT-hBM absorbance, resp., day 1: 0.305±0.027–0.234±0.015, P=0.029, day 4: 0.355±0.003–0.318±0.007, P=0.001, and day 7: 0.400±0.017–0.356±0.008, P=0.672). hAT-MSCs showed superior tolerance to oxidative stress triggered by 2 mmol/L H2O2 and also have superior antiapoptosis capacity toward serum-free culture. Conclusion. In this study we found that hAT-MSCs are more resistant to in vitro apoptosis.


2005 ◽  
Vol 288 (6) ◽  
pp. R1664-R1672 ◽  
Author(s):  
Joe Quadrilatero ◽  
Laurie Hoffman-Goetz

Lymphocyte apoptosis has been observed after strenuous exercise. Both glucocorticoids (GC) and reactive oxygen species (ROS) have been suggested to contribute to exercise-induced lymphocyte apoptosis. The aims of this study were to 1) examine the direct contribution of GC during exercise-induced intestinal lymphocyte (IL) apoptosis and 2) determine the contribution of oxidative stress, in the absence of GC, to exercise-induced IL apoptosis. Mice were bilaterally adrenalectomized (ADX) and randomly assigned to receive saline (SAL) or N-acetyl-l-cysteine (NAC) 30 min before treadmill exercise (EX). EX consisted of 90 min of continuous running at a 2° slope (30 min at 22 m/min, 30 min at 25 m/min; and 30 min at 28 m/min), and then killed immediately (Imm) or 24 h (24h) postexercise. Control mice were exposed to a nonexercised (NonEX) condition consisting of treadmill noise and vibration without running. ILs were isolated and measured for apoptotic (phosphatidylserine externalization, mitochondrial membrane depolarization, Bcl-2, caspase 3, and cytosolic cytochrome c) and oxidative stress (H2O2and glutathione) markers. Plasma was analyzed for corticosterone (CORT) by radioimmunoassay. ADX eliminated the exercise-induced elevation in CORT but did not prevent IL apoptosis and cell loss relative to NonEX mice. In contrast, administration of NAC to ADX mice protected ILs from apoptotic cell death and inhibited post-exercise cell loss. These findings suggest that GC are not responsible for exercise-induced apoptosis and cell loss of ILs. The protective effect provided by the antioxidant NAC strongly suggest that oxidative stress is the primary pathway for IL apoptosis and cell loss after strenuous exercise.


2003 ◽  
Vol 284 (6) ◽  
pp. H2235-H2241 ◽  
Author(s):  
Masashi Ichinose ◽  
Hidetoshi Yonemochi ◽  
Toshiaki Sato ◽  
Tetsunori Saikawa

Although mitochondrial ATP-sensitive potassium (mitoKATP) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoKATP channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoKATP channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosis of cultured neonatal rat cardiomyocytes was determined by flow cytometry (light scatter and propidium iodide/annexin V-FITC fluorescence) and by nuclear staining with Hoechst 33342. Mitochondrial membrane potential (ΔΨ) was measured by flow cytometry of cells stained with rhodamine-123 (Rh-123). Exposure to H2O2 (500 μM) induced apoptosis, and the percentage of apoptotic cells increased progressively and peaked at 2 h. This H2O2-induced apoptosis was associated with the loss of ΔΨ, and the time course of decrease in Rh-123 fluorescence paralleled that of apoptosis. Pretreatment of cardiomyocytes with diazoxide (100 μM), a putative mitoKATP channel opener, for 30 min before exposure to H2O2 elicited transient and mild depolarization of ΔΨ and consequently suppressed both apoptosis and ΔΨ loss after 2-h exposure to H2O2. These protective effects of diazoxide were abrogated by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM) but not by the sarcolemmal KATP channel blocker HMR-1098 (30 μM). Our results suggest for the first time that diazoxide-induced opening of mitoKATP channels triggers cardioprotection against apoptosis induced by oxidative stress in rat cardiomyocytes.


2015 ◽  
Vol 51 (52) ◽  
pp. 10510-10513 ◽  
Author(s):  
Amandeep Kaur ◽  
Mohammad A. Haghighatbin ◽  
Conor F. Hogan ◽  
Elizabeth J. New

A FRET-based, ratiometric redox probe undergoes a fluorescence colour change upon reduction, and can be used to study cellular oxidative capacity using confocal microscopy, fluorescence lifetime imaging and flow cytometry.


2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.


2018 ◽  
Vol 18 (5) ◽  
pp. 322-334 ◽  
Author(s):  
J.-L. Piao ◽  
Y.-J. Jin ◽  
M.-L. Li ◽  
S.A. Zakki ◽  
L. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document