scholarly journals The Histone Fold Domain of Cse4 Is Sufficient for CEN Targeting and Propagation of Active Centromeres in Budding Yeast

2004 ◽  
Vol 3 (6) ◽  
pp. 1533-1543 ◽  
Author(s):  
Lisa Morey ◽  
Kelly Barnes ◽  
Yinhuai Chen ◽  
Molly Fitzgerald-Hayes ◽  
Richard E. Baker

ABSTRACT Centromere-specific H3-like proteins (CenH3s) are conserved across the eukaryotic kingdom and are required for packaging centromere DNA into a specialized chromatin structure required for kinetochore assembly. Cse4 is the CenH3 protein of the budding yeast Saccharomyces cerevisiae. Like all CenH3 proteins, Cse4 consists of a conserved histone fold domain (HFD) and a divergent N terminus (NT). The Cse4 NT contains an essential domain designated END (for essential N-terminal domain); deletion of END is lethal. To investigate the role of the Cse4 NT in centromere targeting, a series of deletion alleles (cse4ΔNT) were analyzed. No part of the Cse4 NT was required to target mutant proteins to centromere DNA in the presence of functional Cse4. A Cse4 degron strain was used to examine targeting of a Cse4ΔNT protein in the absence of wild-type Cse4. The END was not required for centromere targeting under these conditions, confirming that the HFD confers specificity of Cse4 centromere targeting. Surprisingly, overexpression of the HFD bypassed the requirement for the END altogether, and viable S. cerevisiae strains in which the cells express only the Cse4 HFD and six adjacent N-terminal amino acids (Cse4Δ129) were constructed. Despite the complete absence of the NT, mitotic chromosome loss in the cse4Δ129 strain increased only 6-fold compared to a 15-fold increase in strains overexpressing wild-type Cse4. Thus, when overexpressed, the Cse4 HFD is sufficient for centromere function in S. cerevisiae, and no posttranslational modification or interaction of the NT with other kinetochore component(s) is essential for accurate chromosome segregation in budding yeast.

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 973-981
Author(s):  
Kevin C Keith ◽  
Molly Fitzgerald-Hayes

Abstract Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.


2000 ◽  
Vol 20 (18) ◽  
pp. 7037-7048 ◽  
Author(s):  
Yinhuai Chen ◽  
Richard E. Baker ◽  
Kevin C. Keith ◽  
Kendra Harris ◽  
Sam Stoler ◽  
...  

ABSTRACT Cse4p is an evolutionarily conserved histone H3-like protein that is thought to replace H3 in a specialized nucleosome at the yeast (Saccharomyces cerevisiae) centromere. All known yeast, worm, fly, and human centromere H3-like proteins have highly conserved C-terminal histone fold domains (HFD) but very different N termini. We have carried out a comprehensive and systematic mutagenesis of the Cse4p N terminus to analyze its function. Surprisingly, only a 33-amino-acid domain within the 130-amino-acid-long N terminus is required for Cse4p N-terminal function. The spacing of the essential N-terminal domain (END) relative to the HFD can be changed significantly without an apparent effect on Cse4p function. The END appears to be important for interactions between Cse4p and known kinetochore components, including the Ctf19p/Mcm21p/Okp1p complex. Genetic and biochemical evidence shows that Cse4p proteins interact with each other in vivo and that nonfunctional cse4 END and HFD mutant proteins can form functional mixed complexes. These results support different roles for the Cse4p N terminus and the HFD in centromere function and are consistent with the proposed Cse4p nucleosome model. The structure-function characteristics of the Cse4p N terminus are relevant to understanding how other H3-like proteins, such as the human homolog CENP-A, function in kinetochore assembly and chromosome segregation.


2005 ◽  
Vol 71 (2) ◽  
pp. 621-628 ◽  
Author(s):  
Zhi-Wei Chen ◽  
Cheng-Ying Jiang ◽  
Qunxin She ◽  
Shuang-Jiang Liu ◽  
Pei-Jin Zhou

ABSTRACT Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have similar structures and that none of them form any disulfide bond. Thus, it is proposed that three cysteine residues, C31 and C101-X-X-C104, in the conserved domains constitute the putative binding and catalytic sites of SOR. Furthermore, enzymatic activity assays of the subcellular fractions and immune electron microscopy indicated that SOR is not only present in the cytoplasm but also associated with the cytoplasmic membrane of A. tengchongensis. The membrane-associated SOR activity was colocalized with the activities of sulfite:acceptor oxidoreductase and thiosulfate:acceptor oxidoreductase. We tentatively propose that these enzymes are located in close proximity on the membrane to catalyze sulfur oxidation in A. tengchongensis.


1990 ◽  
Vol 10 (12) ◽  
pp. 6257-6263
Author(s):  
A Frankel ◽  
P Welsh ◽  
J Richardson ◽  
J D Robertus

The gene for ricin toxin A chain was modified by site-specific mutagenesis to change arginine 180 to alanine, glutamine, methionine, lysine, or histidine. Separately, glutamic acid 177 was changed to alanine and glutamic acid 208 was changed to aspartic acid. Both the wild-type and mutant proteins were expressed in Escherichia coli and, when soluble, purified and tested quantitatively for enzyme activity. A positive charge at position 180 was found necessary for solubility of the protein and for enzyme activity. Similarly, a negative charge with a proper geometry in the vicinity of position 177 was critical for ricin toxin A chain catalysis. When glutamic acid 177 was converted to alanine, nearby glutamic acid 208 could largely substitute for it. This observation provided valuable structural information concerning the nature of second-site mutations.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
X.-J Du ◽  
W B Zhao ◽  
Q Lu ◽  
M N Nguyen ◽  
M Ziemann ◽  
...  

Abstract Background Galectin-3 (Gal-3) is a clinical biomarker for risk of cardiovascular disease and a disease mediator forming a therapeutic target. However, the mechanism(s) that regulate cardiac expression of Gal-3 remains unknown. Activation of the sympatho-β-adrenergic system is a hallmark of heart disease, but the relationship of βAR activation and cardiac content of Gal-3 remains unknown. Purpose To determine the role of βAR activation in regulating cardiac Gal-3 level and the responsible mechanism focusing on the Hippo signalling pathway. Methods Wild-type and Gal-3 gene deleted (Gal3-KO) mice were used. To test the role of the Hippo pathway, we used transgenic (TG) mouse strains with cardiac overexpression of mammalian-20-like sterile kinase 1 (Mst1, mammalian orthology of Drosophila Hippo kinase) either in wild-type form (TG-Mst1) or dominative-negative kinase dead mutant form (TG-dnMst1). Effects of β-antagonist (isoprenaline, ISO) and antagonists were determined. We measured phosphorylation (Ser127) of YAP as a transcription co-regulator acting as the main signal output of the Hippo pathway. Results In wild-type mice, treatment with ISO led to a time- and dose-dependent increase in cardiac expression of Gal-3 (Fig. A) accompanied by elevated circulating Gal-3 levels (Fig. B). ISO treatment stimulated cardiac expression of Mst1 and YAP hyper-phosphorylation (i.e. inactivation, Fig. C), indicating activation of the Hippo signalling. These effects of ISO were inhibited by β-blockers (propranolol, Prop; carvedilol, Carv; Fig. D,E). Relative to non-TG controls, ISO-induced expression of Gal-3 was inhibited by 75% in TG-dnMst1 mice (inactivated Mst1), but exaggerated by 7-fold in TG-Mst1 mice (activated Mst1). Mst1-TG mice had a 45-fold increase in Gal-3 content, YAP hyper-phosphorylation and enhanced pro-fibrotic signaling. In Mst1-TG mice, whilst blood Gal-3 level was unchanged, treatment with ISO (6 mg, 2 days) evoked a marked increase in cardiac and blood Gal-3 levels. Using rat cardiomyoblasts, we showed that ISO-mediated Mst1 expression and YAP phosphorylation were PKA-dependent and that siRNA-mediated YAP knockdown led to Gal-3 upregulation. The role of Gal-3 in mediating ISO-induced cardiomyopathy was examined by treating wild-type and Gal3-KO mice with ISO (30 mg/kg, 7 days). ISO-treated wild-type mice had 8-fold increase in cardiac Gal-3, ventricular dysfunction, fibrosis, hypertrophy and activated inflammatory or fibrotic signalling. All these changes, except hypertrophy, were abolished by Gal3-KO. beta-AR regulates galectin-3 Conclusion βAR stimulation increases cardiac expression of Gal-3 through activation of the Hippo signalling pathway. This is accompanied by elevated circulating Gal-3 level. βAR antagonists inhibited βAR-Mst1 (Hippo) signalling and cardiac Gal-3 expression, actions likely contributing to the overall efficacy of β-blockers. Acknowledgement/Funding NHMRC of Australia; Nature Science Fund of China


2000 ◽  
Vol 278 (1) ◽  
pp. L75-L80 ◽  
Author(s):  
Machiko Ikegami ◽  
Jeffrey A. Whitsett ◽  
Zissis C. Chroneos ◽  
Gary F. Ross ◽  
Jacquelyn A. Reed ◽  
...  

Mice that express interleukin (IL)-4 in Clara cells (CCSP-IL-4) develop chronic airway inflammation and an alveolar proteinosis-like syndrome. To identify the role of IL-4 in surfactant homeostasis, we measured lipid and protein metabolism in the lungs of CCSP-IL-4 mice in vivo. Alveolar saturated phosphatidylcholine (Sat PC) pools were increased 6.5-fold and lung tissue Sat PC pools were increased 4.8-fold in the IL-4 transgenic mice. Whereas surfactant protein (SP) A was increased proportionately to Sat PC, SP-D was increased approximately 90-fold in the IL-4 mice compared with wild-type mice and was associated with 2.8-fold increase in SP-D mRNA. The incorporation of palmitate and choline into Sat PC was increased about twofold in CCSP-IL-4 mice. Although trace doses of radiolabeled Sat PC were cleared from the air spaces and lungs of CCSP-IL-4 mice more slowly than in wild-type mice, net clearance of Sat PC from the lungs of CCSP-IL-4 mice was sixfold higher in the IL-4 mice than in wild-type mice because of the larger Sat PC pool sizes. Expression of IL-4 in Clara cells increased surfactant lipid synthesis and clearance, establishing a new equilibrium with increased surfactant pools and an alveolar proteinosis associated with a selective increase in SP-D protein, demonstrating a previously unexpected effect of IL-4 in pulmonary surfactant homeostasis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1549-1549
Author(s):  
Jorge P. Pinto ◽  
Pedro Ramos ◽  
Sergio de Almeida ◽  
Susana Oliveira ◽  
Laura Breda ◽  
...  

Abstract Studies done in non-hepatic cell lines, focusing on the interaction between HFE with TFR1 and β-2M proved insufficient to explain the discrepancies found in the clinical penetrance of hemochromatosis in subjects carrying the C282Y mutation. Our first goal was to investigate the role of HFE wild type (wt) and mutant proteins (C282Y and H63D) in a human hepatic cell line, focusing on the cellular localization and interaction of HFE with the expression of other iron related proteins. HFE mutant C282Y was found to be retained in the endoplasmic reticulum (ER). Thus, in addition, we investigated the effect of HFE wt and mutant proteins on Calreticulin, which is a chaperon protein that responds to ER stress and has a protective effect on oxidative damage in some cell lines. Here we report setting up a stable transfection of wt- and mutant-HFE in a hepatic cell line (HepG2) and examine the intracellular distribution of wt- and HFE mutants, their effect on iron intake independently of TFR1 and on the expression of other iron and ER stress response genes, namely Hepcidin and Calreticulin. In addition, we validated some of the novel effects of HFE on Calreticulin using peripheral blood mononuclear cells from HFE patients. The localization of the HFE variants was analyzed using KDEL and Golgin-97 as ER and the Golgi complex markers, respectively. HFE C282Y shows a high degree of overlap with the ER markers, confirming a retention of this variant in this organelle. Over-expression of the HFE wt impaired the intake of 55Fe relatively to transfected control cells (P<0.008) independently of TFR1, as demonstrated by RNAi silencing. Hamp RNA expression was decreased in cells over expressing C282Y in comparison to HFE wt cells (P<0.011). Finally over-expression of HFE wt decreases Calreticulin mRNA, whereas the C282Y had an opposite effect, compared to the control cell line. A similar result was observed in peripheral blood mononuclear cells (PMBC) of C282Y homozygous HFE patients, compared to wild type blood donors (P<0.006). Interestingly, this data suggest that synthesis of the HFE mutant C282Y triggers a protective effect on oxidative damage mediated by Calreticulin. In fact, HepG2 cells over-expressing C282Y showed lower levels of ROS than HFE wt (P<0.004). This observation might contribute to explain some of the discrepancies seen in the clinical penetrance of the disease in C282Y carrying subjects. The direct effect of the mutant HFE C282Y on mRNA expression of hepcidin also demonstrated here for the first time corroborates and provides a molecular basis for earlier reports of low hepcidin levels in HH patients and in Hfe-KO mice.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3257-3257
Author(s):  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Karin M. Hoffmeister

Abstract Abstract 3257 The regulatory mechanisms of platelet homeostasis remain elusive. We investigated here the role of hepatic asialoglycoprotein receptor (a.k.a. Ashwell-Morell receptor) in platelet clearance. Mice lacking the hepatic asialoglycoprotein receptor Asgpr2 subunit had increased platelet survivals (T1/2 = 49.5±2h) when compared to wild type (WT, T1/2 = 31±4h) mice. Consequently, Asgpr2−/− mice had platelet counts increased by ∼20%, compared to WT, with increased terminal galactose exposure, as demonstrated using the galactose specific lectin RCA1. Bone marrow and spleen megakaryocyte numbers were reduced by ∼15% and ∼20% in Asgpr2−/− mice, compared to WT mice. Sialidase (NA, Clostidium perfringens, 50mU/mice) maximally desialylated circulating platelets when injected intravenously, as evidenced by increased RCA1 binding. Sialidase injection resulted in a ∼60% depletion of circulating platelets after 24h in Asgpr2−/− mice, compared to >90% in WT mice, indicating that desialylated platelets were partially removed by Asgpr1/2. In contrast to platelets, red blood cell counts were unaffected by sialidase treatment. Sialidase injection for 72h resulted in a 2.3-fold and 1.2-fold increase in megakaryocyte numbers in the spleen and bone marrow of WT mice, respectively, but not in Asgpr2−/− mice. In contrast to sialidase treatment, injections of rabbit anti-mouse platelet serum (RAMPS) depleted >95% of circulating platelets and increased by 70% bone marrow, but not spleen MK numbers in both WT and Asgpr2−/− mice. The data shows that removal of desialylated, i.e, senescent, platelets by the hepatic Ashwell-Morell receptor differs to that of antibody-mediated platelet clearance. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 22 (14) ◽  
pp. 2448-2457 ◽  
Author(s):  
Erin L. Barnhart ◽  
Russell K. Dorer ◽  
Andrew W. Murray ◽  
Scott C. Schuyler

Chromosome segregation depends on the spindle checkpoint, which delays anaphase until all chromosomes have bound microtubules and have been placed under tension. The Mad1–Mad2 complex is an essential component of the checkpoint. We studied the consequences of removing one copy of MAD2 in diploid cells of the budding yeast, Saccharomyces cerevisiae. Compared to MAD2/MAD2 cells, MAD2/mad2Δ heterozygotes show increased chromosome loss and have different responses to two insults that activate the spindle checkpoint: MAD2/mad2Δ cells respond normally to antimicrotubule drugs but cannot respond to chromosomes that lack tension between sister chromatids. In MAD2/mad2Δ cells with normal sister chromatid cohesion, removing one copy of MAD1 restores the checkpoint and returns chromosome loss to wild-type levels. We conclude that cells need the normal Mad2:Mad1 ratio to respond to chromosomes that are not under tension.


2002 ◽  
Vol 76 (9) ◽  
pp. 4199-4211 ◽  
Author(s):  
Miriam I. Quiñones-Kochs ◽  
Linda Buonocore ◽  
John K. Rose

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.


Sign in / Sign up

Export Citation Format

Share Document