scholarly journals Implication of Sialidases in Salmonella Infection: Genome Release of Sialidase Knockout Strains from Salmonella enterica Serovar Typhimurium LT2

2017 ◽  
Vol 5 (19) ◽  
Author(s):  
Narine Arabyan ◽  
Allison M. Weis ◽  
Bihua C. Huang ◽  
Bart C. Weimer

ABSTRACT Sialidases, which are widely distributed in nature, cleave the α-ketosidic bond of terminal sialic acid residue. These emerging virulence factors degrade the host glycan. We report here the release of seven sialidase and one sialic acid transporter deletion in Salmonella enterica serovar Typhimurium strain LT2, which are important in cellular invasion during infection.

2017 ◽  
Vol 5 (31) ◽  
Author(s):  
Narine Arabyan ◽  
Bihua C. Huang ◽  
Bart C. Weimer

ABSTRACT Chitinases are glycosyl hydrolases that catalyze the hydrolysis of the β-1,4 linkages in complex carbohydrates and those that contain GlcNAc. These enzymes are considered emerging virulence factors during infection because the host glycan changes. This is the release of four single chitinase deletion mutants in Salmonella enterica serovar Typhimurium LT2.


2012 ◽  
Vol 56 (11) ◽  
pp. 6037-6040 ◽  
Author(s):  
Vito Ricci ◽  
Stephen J. W. Busby ◽  
Laura J. V. Piddock

ABSTRACTRamA is a transcription factor involved in regulating multidrug resistance inSalmonella entericaserovar Typhimurium SL1344. Green fluorescent protein (GFP) reporter fusions were exploited to investigate the regulation of RamA expression by RamR. We show that RamR represses theramApromoter by binding to a palindromic sequence and describe a superrepressor RamR mutant that binds to theramApromoter sequence more efficiently, thus exhibiting aramAinactivated phenotype.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Melina B. Cian ◽  
Nicole P. Giordano ◽  
Revathi Masilamani ◽  
Keaton E. Minor ◽  
Zachary D. Dalebroux

ABSTRACT Salmonella enterica serovar Typhimurium (S. Typhimurium) relies upon the inner membrane protein PbgA to enhance outer membrane (OM) integrity and promote virulence in mice. The PbgA transmembrane domain (residues 1 to 190) is essential for viability, while the periplasmic domain (residues 191 to 586) is dispensable. Residues within the basic region (residues 191 to 245) bind acidic phosphates on polar phospholipids, like for cardiolipins, and are necessary for salmonella OM integrity. S. Typhimurium bacteria increase their OM cardiolipin concentrations during activation of the PhoPQ regulators. The mechanism involves PbgA’s periplasmic globular region (residues 245 to 586), but the biological role of increasing cardiolipins on the surface is not understood. Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB (also known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191–586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Complementation and substitution mutations in LapB and LpxC generally restored the phospholipid and LPS assembly defects for the pbgA mutants. During bacteremia, mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. Remarkably, wild-type mice survived asymptomatically with pbgA-lpxC salmonellae in their livers and spleens for months, but Toll-like receptor 4-deficient animals succumbed to these infections within roughly 1 week. In summary, S. Typhimurium uses PbgA to influence LPS assembly during stress in order to survive, adapt, and proliferate within the host environment.


2019 ◽  
Vol 201 (8) ◽  
Author(s):  
María M. Banda ◽  
Crispín Zavala-Alvarado ◽  
Deyanira Pérez-Morales ◽  
Víctor H. Bustamante

ABSTRACT H-NS-mediated repression of acquired genes and the subsequent adaptation of regulatory mechanisms that counteract this repression have played a central role in the Salmonella pathogenicity evolution. The Salmonella pathogenicity island 2 (SPI-2) is an acquired chromosomal region containing genes necessary for Salmonella enterica to colonize and replicate in different niches of hosts. The ssrAB operon, located in SPI-2, encodes the two-component system SsrA-SsrB, which positively controls the expression of the SPI-2 genes but also other many genes located outside SPI-2. Several regulators have been involved in the expression of ssrAB, such as the ancestral regulators SlyA and OmpR, and the acquired regulator HilD. In this study, we show how SlyA, HilD, and OmpR coordinate to induce the expression of ssrAB under different growth conditions. We found that when Salmonella enterica serovar Typhimurium is grown in nutrient-rich lysogeny broth (LB), SlyA and HilD additively counteract H-NS-mediated repression on ssrAB, whereas in N-minimal medium (N-MM), SlyA antagonizes H-NS-mediated repression on ssrAB independently of HilD. Interestingly, our results indicate that OmpR is required for the expression of ssrAB independently of the growth conditions, even in the absence of repression by H-NS. Therefore, our data support two mechanisms adapted for the expression of ssrAB under different growth conditions. One involves the additive action of SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on ssrAB, thus favoring in both cases the activation of ssrAB by OmpR. IMPORTANCE The global regulator H-NS represses the expression of acquired genes and thus avoids possible detrimental effects on bacterial fitness. Regulatory mechanisms are adapted to induce expression of the acquired genes in particular niches to obtain a benefit from the information encoded in the foreign DNA, as for pathogenesis. Here, we show two mechanisms that were integrated for the expression of virulence genes in Salmonella Typhimurium. One involves the additive action of the regulators SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on the ssrAB operon, thus favoring its activation by the OmpR regulator. To our knowledge, this is the first report involving the coordinated action of two regulators to counteract H-NS-mediated repression.


2019 ◽  
Vol 8 (18) ◽  
Author(s):  
Chandler O’Leary ◽  
Yicheng Xie ◽  
Rohit Kongari ◽  
Jason J. Gill ◽  
Mei Liu

Bacteriophage Siskin is a member of the χ-like siphovirus phage cluster that infects Salmonella enterica serovar Typhimurium strain LT2. Here, we report the complete 58,476-bp sequence of the Siskin genome, provide confirmation of its genomic termini, and describe a potentially new class of holins and endolysins found in the lysis cassette.


2019 ◽  
Vol 8 (27) ◽  
Author(s):  
Matthew Rohren ◽  
Yicheng Xie ◽  
Chandler O’Leary ◽  
Rohit Kongari ◽  
Jason Gill ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium is a Gram-negative pathogen and a primary cause of foodborne illnesses worldwide. Here, we present the complete 47,393-bp genome sequence of the siphophage Skate, which was isolated against S. Typhimurium strain LT2.


2019 ◽  
Vol 25 (10) ◽  
pp. 1629-1643 ◽  
Author(s):  
Katrin Ehrhardt ◽  
Natalie Steck ◽  
Reinhild Kappelhoff ◽  
Stephanie Stein ◽  
Florian Rieder ◽  
...  

AbstractBackgroundIntestinal fibrosis is a common and serious complication of Crohn’s disease characterized by the accumulation of fibroblasts, deposition of extracellular matrix, and formation of scar tissue. Although many factors including cytokines and proteases contribute to the development of intestinal fibrosis, the initiating mechanisms and the complex interplay between these factors remain unclear.MethodsChronic infection of mice with Salmonella enterica serovar Typhimurium was used to induce intestinal fibrosis. A murine protease-specific CLIP-CHIP microarray analysis was employed to assess regulation of proteases and protease inhibitors. To confirm up- or downregulation during fibrosis, we performed quantitative real-time polymerase chain reaction (PCR) and immunohistochemical stainings in mouse tissue and tissue from patients with inflammatory bowel disease. In vitro infections were used to demonstrate a direct effect of bacterial infection in the regulation of proteases.ResultsMice develop severe and persistent intestinal fibrosis upon chronic infection with Salmonella enterica serovar Typhimurium, mimicking the pathology of human disease. Microarray analyses revealed 56 up- and 40 downregulated proteases and protease inhibitors in fibrotic cecal tissue. Various matrix metalloproteases, serine proteases, cysteine proteases, and protease inhibitors were regulated in the fibrotic tissue, 22 of which were confirmed by quantitative real-time PCR. Proteases demonstrated site-specific staining patterns in intestinal fibrotic tissue from mice and in tissue from human inflammatory bowel disease patients. Finally, we show in vitro that Salmonella infection directly induces protease expression in macrophages and epithelial cells but not in fibroblasts.ConclusionsIn summary, we show that chronic Salmonella infection regulates proteases and protease inhibitors during tissue fibrosis in vivo and in vitro, and therefore this model is well suited to investigating the role of proteases in intestinal fibrosis.


2004 ◽  
Vol 72 (7) ◽  
pp. 4138-4150 ◽  
Author(s):  
Bärbel Stecher ◽  
Siegfried Hapfelmeier ◽  
Catherine Müller ◽  
Marcus Kremer ◽  
Thomas Stallmach ◽  
...  

ABSTRACT Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.


2017 ◽  
Vol 5 (6) ◽  
Author(s):  
Dele Ogunremi ◽  
Burton Blais ◽  
Hongsheng Huang ◽  
Linru Wang ◽  
Mohamed Elmufti ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium strains 22495 and 22792, obtained from wild birds, were found to display different virulence attributes in an experimental chicken model. Closed genome sequences were assembled after sequencing with the Roche 454 and Illumina MiSeq platforms. An additional plasmid was present in the more virulent strain 22495.


Sign in / Sign up

Export Citation Format

Share Document