scholarly journals Biochemical and Localization Analyses of Putative Type III Secretion Translocator Proteins CopB and CopB2 of Chlamydia trachomatis Reveal Significant Distinctions

2011 ◽  
Vol 79 (8) ◽  
pp. 3036-3045 ◽  
Author(s):  
B. Chellas-Géry ◽  
K. Wolf ◽  
J. Tisoncik ◽  
T. Hackstadt ◽  
K. A. Fields

ABSTRACTChlamydiaspp. are among the many pathogenic Gram-negative bacteria that employ a type III secretion system (T3SS) to overcome host defenses and exploit available resources. Significant progress has been made in elucidating contributions of T3S to the pathogenesis of these medically important, obligate intracellular parasites, yet important questions remain. Chief among these is how secreted effector proteins traverse eukaryotic membranes to gain access to the host cytosol. Due to a complex developmental cycle, it is possible that chlamydiae utilize a different complement of proteins to accomplish translocation at different stages of development. We investigated this possibility by extending the characterization ofC. trachomatisCopB and CopB2. CopB is detected early during infection but is depleted and not detected again until about 20 h postinfection. In contrast, CopB2 was detectible throughout development. CopB is associated with the inclusion membrane. Biochemical and ectopic expression analyses were consistent with peripheral association of CopB2 with inclusion membranes. This interaction correlated with development and required both chlamydialde novoprotein synthesis and T3SS activity. Collectively, our data indicate that it is unlikely that CopB serves as the sole chlamydial translocation pore and that CopB2 is capable of association with the inclusion membrane.

2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Josh S. Sharp ◽  
Arne Rietsch ◽  
Simon L. Dove

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen that employs a type III secretion system (T3SS) to inject effector proteins into host cells. Using a protein depletion system, we show that the endoribonuclease RNase E positively regulates expression of the T3SS genes. We also present evidence that RNase E antagonizes the expression of genes of the type VI secretion system and limits biofilm production in P. aeruginosa. Thus, RNase E, which is thought to be the principal endoribonuclease involved in the initiation of RNA degradation in P. aeruginosa, plays a key role in controlling the production of factors involved in both acute and chronic stages of infection. Although the posttranscriptional regulator RsmA is also known to positively regulate expression of the T3SS genes, we find that RNase E does not appreciably influence the abundance of RsmA in P. aeruginosa. Moreover, we show that RNase E still exerts its effects on T3SS gene expression in cells lacking all four of the key small regulatory RNAs that function by sequestering RsmA. IMPORTANCE The type III secretion system (T3SS) is a protein complex produced by many Gram-negative pathogens. It is capable of injecting effector proteins into host cells that can manipulate cell metabolism and have toxic effects. Understanding how the T3SS is regulated is important in understanding the pathogenesis of bacteria with such systems. Here, we show that RNase E, which is typically thought of as a global regulator of RNA stability, plays a role in regulating the T3SS in Pseudomonas aeruginosa. Depleting RNase E results in the loss of T3SS gene expression as well as a concomitant increase in biofilm formation. These observations are reminiscent of the phenotypes associated with the loss of activity of the posttranscriptional regulator RsmA. However, RNase E-mediated regulation of these systems does not involve changes in the abundance of RsmA and is independent of the known small regulatory RNAs that modulate RsmA activity.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Netanel Elbaz ◽  
Yaakov Socol ◽  
Naama Katsowich ◽  
Ilan Rosenshine

ABSTRACT The transition from a planktonic lifestyle to a host-attached state is often critical for bacterial virulence. Upon attachment to host cells, enteropathogenic Escherichia coli (EPEC) employs a type III secretion system (T3SS) to inject into the host cells ∼20 effector proteins, including Tir. CesT, which is encoded from the same operon downstream of tir, is a Tir-bound chaperone that facilitates Tir translocation. Upon Tir translocation, the liberated CesT remains in the bacterial cytoplasm and antagonizes the posttranscriptional regulator CsrA, thus eliciting global regulation in the infecting pathogen. Importantly, tight control of the Tir/CesT ratio is vital, since an uncontrolled surge in free CesT levels may repress CsrA in an untimely manner, thus abrogating colonization. We investigated how fluctuations in Tir translation affect the regulation of this ratio. By creating mutations that cause the premature termination of Tir translation, we revealed that the untranslated tir mRNA becomes highly unstable, resulting in a rapid drop in cesT mRNA levels and, thus, CesT levels. This mechanism couples Tir and CesT levels to ensure a stable Tir/CesT ratio. Our results expose an additional level of regulation that enhances the efficacy of the initial interaction of EPEC with the host cell, providing a better understanding of the bacterial switch from the planktonic to the cell-adherent lifestyle. IMPORTANCE Host colonization by extracellular pathogens often entails the transition from a planktonic lifestyle to a host-attached state. Enteropathogenic E. coli (EPEC), a Gram-negative pathogen, attaches to the intestinal epithelium of the host and employs a type III secretion system (T3SS) to inject effector proteins into the cytoplasm of infected cells. The most abundant effector protein injected is Tir, whose translocation is dependent on the Tir-bound chaperon CesT. Upon Tir injection, the liberated CesT binds to and inhibits the posttranscriptional regulator CsrA, resulting in reprogramming of gene expression in the host-attached bacteria. Thus, adaptation to the host-attached state involves dynamic remodeling of EPEC gene expression, which is mediated by the relative levels of Tir and CesT. Fluctuating from the optimal Tir/CesT ratio results in a decrease in EPEC virulence. Here we elucidate a posttranscriptional circuit that prevents sharp variations from this ratio, thus improving host colonization.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Erez Mills ◽  
Kobi Baruch ◽  
Gili Aviv ◽  
Mor Nitzan ◽  
Ilan Rosenshine

ABSTRACT Type III secretion systems (TTSSs) are employed by pathogens to translocate host cells with effector proteins, which are crucial for virulence. The dynamics of effector translocation, behavior of the translocating bacteria, translocation temporal order, and relative amounts of each of the translocated effectors are all poorly characterized. To address these issues, we developed a microscopy-based assay that tracks effector translocation. We used this assay alongside a previously described real-time population-based translocation assay, focusing mainly on enteropathogenic Escherichia coli (EPEC) and partly comparing it to Salmonella. We found that the two pathogens exhibit different translocation behaviors: in EPEC, a subpopulation that formed microcolonies carried out most of the translocation activity, while Salmonella executed protein translocation as planktonic bacteria. We also noted variability in host cell susceptibility, with some cells highly resistant to translocation. We next extended the study to determine the translocation dynamics of twenty EPEC effectors and found that all exhibited distinct levels of translocation efficiency. Further, we mapped the global effects of key TTSS-related components on TTSS activity. Our results provide a comprehensive description of the dynamics of the TTSS activity of EPEC and new insights into the mechanisms that control the dynamics. IMPORTANCE EPEC and the closely related enterohemorrhagic Escherichia coli (EHEC) represent a global public health problem. New strategies to combat EPEC and EHEC infections are needed, and development of such strategies requires better understanding of their virulence machinery. The TTSS is a critical virulence mechanism employed by these pathogens, and by others, including Salmonella. In this study, we aimed at elucidating new aspects of TTSS function. The results obtained provide a comprehensive description of the dynamics of TTSS activity of EPEC and new insights into the mechanisms that control these changes. This knowledge sets the stage for further analysis of the system and may accelerate the development of new ways to treat EPEC and EHEC infections. Further, the newly described microscopy-based assay can be readily adapted to study the dynamics of TTSS activity in other pathogens.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


mSphere ◽  
2021 ◽  
Author(s):  
N. Plaza ◽  
I. M. Urrutia ◽  
K. Garcia ◽  
M. K. Waldor ◽  
C. J. Blondel

Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function.


2016 ◽  
Vol 85 (2) ◽  
Author(s):  
Jens Hausner ◽  
Nadine Hartmann ◽  
Michael Jordan ◽  
Daniela Büttner

ABSTRACT The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which spans both bacterial membranes and translocates effector proteins into plant cells. The assembly of the T3S system presumably involves the predicted lytic transglycosylase (LT) HpaH, which is encoded adjacent to the T3S gene cluster. Bacterial LTs degrade peptidoglycan and often promote the formation of membrane-spanning macromolecular protein complexes. In the present study, we show that HpaH localizes to the bacterial periplasm and binds to peptidoglycan as well as to components of the T3S system, including the predicted periplasmic inner rod proteins HrpB1 and HrpB2 as well as the pilus protein HrpE. In vivo translocation assays revealed that HpaH promotes the translocation of various effector proteins and of early substrates of the T3S system, suggesting a general contribution of HpaH to type III-dependent protein export. Mutant studies and the analysis of reporter fusions showed that the N-terminal region of HpaH contributes to protein function and is proteolytically cleaved. The N-terminally truncated HpaH cleavage product is secreted into the extracellular milieu by a yet-unknown transport pathway, which is independent of the T3S system.


2015 ◽  
Vol 81 (17) ◽  
pp. 6078-6087 ◽  
Author(s):  
Zhi Peng Gao ◽  
Pin Nie ◽  
Jin Fang Lu ◽  
Lu Yi Liu ◽  
Tiao Yi Xiao ◽  
...  

ABSTRACTThe type III secretion system (T3SS) ofEdwardsiella tardaplays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation ofE. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface ofE. tardaand is required for biofilm formation byE. tardain Dulbecco's modified Eagle's medium (DMEM). Biofilm formation byE. tardain DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody toE. tardacultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody toE. tardacultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.


2011 ◽  
Vol 79 (8) ◽  
pp. 2998-3011 ◽  
Author(s):  
Steve Schulz ◽  
Daniela Büttner

ABSTRACTPathogenicity ofXanthomonas campestrispv.vesicatoriadepends on a type III secretion (T3S) system which translocates effector proteins into eukaryotic cells and is associated with an extracellular pilus and a translocon in the host plasma membrane. T3S substrate specificity is controlled by the cytoplasmic switch protein HpaC, which interacts with the C-terminal domain of the inner membrane protein HrcU (HrcUC). HpaC promotes the secretion of translocon and effector proteins but prevents the efficient secretion of the early T3S substrate HrpB2, which is required for pilus assembly. In this study, complementation assays with serial 10-amino-acid HpaC deletion derivatives revealed that the T3S substrate specificity switch depends on N- and C-terminal regions of HpaC, whereas amino acids 42 to 101 appear to be dispensable for the contribution of HpaC to the secretion of late substrates. However, deletions in the central region of HpaC affect the secretion of HrpB2, suggesting that the mechanisms underlying HpaC-dependent control of early and late substrates can be uncoupled. The results of interaction and expression studies with HpaC deletion derivatives showed that amino acids 112 to 212 of HpaC provide the binding site for HrcUCand severely reduce T3S when expressed ectopically in the wild-type strain. We identified a conserved phenylalanine residue at position 175 of HpaC that is required for both protein function and the binding of HpaC to HrcUC. Taking these findings together, we concluded that the interaction between HpaC and HrcUCis essential but not sufficient for T3S substrate specificity switching.


2015 ◽  
Vol 60 (1) ◽  
pp. 459-470 ◽  
Author(s):  
Romina J. Fernandez-Brando ◽  
Nao Yamaguchi ◽  
Amin Tahoun ◽  
Sean P. McAteer ◽  
Trudi Gillespie ◽  
...  

ABSTRACTA subset of Gram-negative bacterial pathogens uses a type III secretion system (T3SS) to open up a conduit into eukaryotic cells in order to inject effector proteins. These modulate pathways to enhance bacterial colonization. In this study, we screened established bioactive compounds for any that could repress T3SS expression in enterohemorrhagicEscherichia coli(EHEC) O157. The ketolides telithromycin and, subsequently, solithromycin both demonstrated repressive effects on expression of the bacterial T3SS at sub-MICs, leading to significant reductions in bacterial binding and actin-rich pedestal formation on epithelial cells. Preincubation of epithelial cells with solithromycin resulted in significantly less attachment ofE. coliO157. Moreover, bacteria expressing the T3SS were more susceptible to solithromycin, and there was significant preferential killing ofE. coliO157 bacteria when they were added to epithelial cells that had been preexposed to the ketolide. This killing was dependent on expression of the T3SS. Taken together, this research indicates that the ketolide that has accumulated in epithelial cells may traffic back into the bacteria via the T3SS. Considering that neither ketolide induces the SOS response, nontoxic members of this class of antibiotics, such as solithromycin, should be considered for future testing and trials evaluating their use for treatment of EHEC infections. These antibiotics may also have broader significance for treating infections caused by other pathogenic bacteria, including intracellular bacteria, that express a T3SS.


2003 ◽  
Vol 71 (5) ◽  
pp. 2555-2562 ◽  
Author(s):  
Anatoly Slepenkin ◽  
Vladimir Motin ◽  
Luis M. de la Maza ◽  
Ellena M. Peterson

ABSTRACT Chlamydia pneumoniae has been shown to possess at least 13 genes that are homologous with other known type III secretion (TTS) systems. Upon infection of HEp-2 cells with C. pneumoniae, the expression of these genes was followed by reverse transcriptase PCR throughout the developmental cycle of this obligate intracellular pathogen. In addition, expression was analyzed when C. pneumoniae was grown in the presence of human gamma interferon (IFN-γ). The groEL-1, ompA, and omcB genes were used as markers for the early, middle, and late stages of the developmental cycle, respectively, and the inhibition of expression of the fstK gene was used as a marker for the effect of IFN-γ on the maturation of C. pneumoniae. In the absence of IFN-γ, the TTS genes were expressed as follows: early stage (1.5 to 8 h), yscC, yscS, yscL, yscJ and lcrH-2; middle stage (by 12 to 18 h), lcrD, yscN, and yscR; and late stage (by 24 h), lcrE, sycE, lcrH-1, and yscT. Of the genes expressed early, the lcrH-2 gene was detected the earliest, at 1.5 h. Expression of the yscU gene was not detected at any of the time points examined. Under the influence of IFN-γ, the cluster of TTS genes that were normally not expressed until the middle to late stages of the developmental cycle, namely, lcrD, lcrE, and sycE, as well as lcrH-1, were down-regulated, and expression could not be detected up to 48 h. In contrast, the expression of the other TTS genes appeared to be unchanged in the presence of IFN-γ. The lcrH-1 and lcrH-2 genes differed from one another in both their temporal expression and response to IFN-γ. In other TTS systems, these genes code for proteins that function in regulation of effector protein synthesis as well as serve as chaperones for proteins that provide for the translocation of the effector proteins into the host cell. In summary, the expression pattern of the TTS genes of C. pneumoniae examined suggests that they are temporally regulated throughout the developmental cycle. Furthermore, paralleling the inhibition of the maturation of the reticulate body to the elementary body, TTS genes expressed in the later stages of the cycle appear to be down-regulated when the organism is grown in the presence of IFN-γ.


Sign in / Sign up

Export Citation Format

Share Document