scholarly journals Induction of Effective Immunity against Trypanosoma cruzi

2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Tere Williams ◽  
Ignacio Guerrero-Ros ◽  
Yanfen Ma ◽  
Fabiane Matos dos Santos ◽  
Philipp E. Scherer ◽  
...  

ABSTRACT Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.

2014 ◽  
Vol 83 (3) ◽  
pp. 898-906 ◽  
Author(s):  
Thiago Marconi Cardoso ◽  
Álvaro Machado ◽  
Diego Luiz Costa ◽  
Lucas P. Carvalho ◽  
Adriano Queiroz ◽  
...  

Cutaneous leishmaniasis (CL) caused byLeishmania braziliensisis characterized by a strong Th1 response that leads to skin lesion development. In areas whereL. braziliensistransmission is endemic, up to 15% of healthy subjects have tested positive for delayed-type hypersensitivity to soluble leishmania antigen (SLA) and are considered to have subclinical (SC) infection. SC subjects produce less gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) than do CL patients, but they are able to control the infection. The aim of this study was to characterized the role of CD8+T cells in SC infection and in CL. Peripheral blood mononuclear cells (PBMC) were stimulated with SLA to determine the frequencies of CD4+IFN-γ+and CD8+IFN-γ+T cells. Monocytes from PBMC were infected withL. braziliensisand cocultured with CD8+T cells, and the frequencies of infected monocytes and levels of cytotoxicity markers, target cell apoptosis, and granzyme B were determined. The frequency of CD8+IFN-γ+cells after SLA stimulation was higher for SC individuals than for CL patients. The frequency of infected monocytes in SC cells was lower than that in CL cells. CL CD8+T cells induced more apoptosis of infected monocytes than did SC CD8+T cells. Granzyme B production in CD8+T cells was higher in CL than in SC cells. While the use of a granzyme B inhibitor decreased the number of apoptotic cells in the CL group, the use of z-VAD-FMK had no effect on the frequency of these cells. These results suggest that CL CD8+T cells are more cytotoxic and may be involved in pathology.


2012 ◽  
Vol 81 (3) ◽  
pp. 740-752 ◽  
Author(s):  
Brian M. Gray ◽  
Clinton A. Fontaine ◽  
Sara A. Poe ◽  
Kathryn A. Eaton

ABSTRACTDisease due to the gastric pathogenHelicobacter pylorivaries in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model ofH. pylorigastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that whileH. pylori-specific CD4+T cells and IFN-γ are both essential for induction of gastritis due toH. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due toH. pyloriis associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway.


2015 ◽  
Vol 84 (1) ◽  
pp. 34-46 ◽  
Author(s):  
Ana Villegas-Mendez ◽  
Tovah N. Shaw ◽  
Colette A. Inkson ◽  
Patrick Strangward ◽  
J. Brian de Souza ◽  
...  

Immune-mediated pathology in interleukin-10 (IL-10)-deficient mice during blood-stage malaria infection typically manifests in nonlymphoid organs, such as the liver and lung. Thus, it is critical to define the cellular sources of IL-10 in these sensitive nonlymphoid compartments during infection. Moreover, it is important to determine if IL-10 production is controlled through conserved or disparate molecular programs in distinct anatomical locations during malaria infection, as this may enable spatiotemporal tuning of the regulatory immune response. In this study, using dual gamma interferon (IFN-γ)–yellow fluorescent protein (YFP) and IL-10–green fluorescent protein (GFP) reporter mice, we show that CD4+YFP+T cells are the major source of IL-10 in both lymphoid and nonlymphoid compartments throughout the course of blood-stagePlasmodium yoeliiinfection. Mature splenic CD4+YFP+GFP+T cells, which preferentially expressed high levels of CCR5, were capable of migrating to and seeding the nonlymphoid tissues, indicating that the systemically distributed host-protective cells have a common developmental history. Despite exhibiting comparable phenotypes, CD4+YFP+GFP+T cells from the liver and lung produced significantly larger quantities of IL-10 than their splenic counterparts, showing that the CD4+YFP+GFP+T cells exert graded functions in distinct tissue locations during infection. Unexpectedly, given the unique environmental conditions within discrete nonlymphoid and lymphoid organs, we show that IL-10 production by CD4+YFP+T cells is controlled systemically during malaria infection through IL-27 receptor signaling that is supported after CD4+T cell priming by ICOS signaling. The results in this study substantially improve our understanding of the systemic IL-10 response to malaria infection, particularly within sensitive nonlymphoid organs.


2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Stephen J. Jordan ◽  
Kanupriya Gupta ◽  
Brian M. O. Ogendi ◽  
Rakesh K. Bakshi ◽  
Richa Kapil ◽  
...  

ABSTRACT Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Yue Zhang ◽  
Camille Khairallah ◽  
Brian S. Sheridan ◽  
Adrianus W. M. van der Velden ◽  
James B. Bliska

ABSTRACTMurine Ly6Chiinflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response toYersinia pseudotuberculosisinfection. We are investigating how IMs, which can differentiate into CD11c+dendritic cells (DCs), contribute to innate and adaptive immunity toY. pseudotuberculosis. Previously, we obtained evidence that IMs are important for a dominant CD8+T cell response to the epitope YopE69–77and host survival using intravenous infections with attenuatedY. pseudotuberculosis. Here we challenged CCR2+/+or CCR2−/−mice orally with wild-typeY. pseudotuberculosisto investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2−/−mice did not have reduced survival but retained body weight better and their MLNs clearedY. pseudotuberculosisfaster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2−/−mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers.In situimaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-richYersinia-containing pyogranulomas. GFP+IMs colocalized with CD11c+cells and YopE69–77-specific CD8+T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses inYersiniapyogranulomas. Consistently, CCR2−/−mice had reduced numbers of splenic DCs, YopE69–77-specific CD8+T cells, CD4+T cells, and B cells in organs and lower levels of serum antibodies toY. pseudotuberculosisantigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oralY. pseudotuberculosisinfection.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Barbara Misme-Aucouturier ◽  
Marjorie Albassier ◽  
Nidia Alvarez-Rueda ◽  
Patrice Le Pape

ABSTRACT A delayed type of multicellular process could be crucial during chronic candidiasis in determining the course of infection. This reaction, consisting of organized immune cells surrounding the pathogen, initiates an inflammatory response to avoid fungal dissemination. The goal of the present study was to examine, at an in vitro cellular scale, Candida and human immune cell interaction dynamics during a long-term period. By challenging human peripheral blood immune cells from 10 healthy donors with 32 Candida albicans and non-albicans (C. glabrata, C. tropicalis, C. parapsilosis, C. dubliniensis, C. lusitaniae, C. krusei, and C. kefyr) clinical isolates, we showed that Candida spp. induced the formation of granuloma-like structures within 6 days after challenge, but their sizes and the respective fungal burdens differed according to the Candida species. These two parameters are positively correlated. Phenotypic characteristics, such as hypha formation and higher axenic growth rate, seem to contribute to yeast persistence within granuloma-like structures. We showed an interindividual variability of the human response against Candida spp. Higher proportions of neutrophils and elevated CD4+/CD8+ T cell ratios during the first days after challenge were correlated with early production of gamma interferon (IFN-γ) and associated with controlled infection. In contrast, the persistence of Candida could result from upregulation of proinflammatory cytokines such as interleukin-6 (IL-6), IFN-γ, and tumor necrosis factor alpha (TNF-α) and a poor anti-inflammatory negative feedback (IL-10). Importantly, regulatory subsets of NK cells and CD4lo CD8hi doubly positive (DP) lymphocytes at late stage infiltrate granuloma-like structures and could correlate with the IL-10 and TNF-α production. These data offer a base frame to explain cellular events that guide infection control or fungal persistence.


2014 ◽  
Vol 21 (10) ◽  
pp. 1443-1451 ◽  
Author(s):  
Steven C. Derrick ◽  
Kristopher Kolibab ◽  
Amy Yang ◽  
Sheldon L. Morris

ABSTRACTDespite the widespread use ofMycobacterium bovisBCG, the only licensed vaccine against tuberculosis (TB), TB remains a global epidemic. To assess whether more direct targeting of the lung mucosa by respiratory immunization would enhance the potency and longevity of BCG-induced anti-TB protective immunity, the long-term impact of intranasal (i.n.) BCG vaccination was compared to conventional subcutaneous (s.c.) immunization by using a mouse model of pulmonary tuberculosis. Although significantly improved protection in the lung was seen at early time points (2 and 4 months postvaccination) in i.n. BCG-immunized mice, no differences in pulmonary protection were seen 8 and 10 months postvaccination. In contrast, in all of the study periods, i.n. BCG vaccination induced significantly elevated protective splenic responses relative to s.c. immunization. At five of nine time points, we observed a splenic protective response exceeding 1.9 log10protection relative to the s.c. route. Furthermore, higher frequencies of CD4 T cells expressing gamma interferon (IFN-γ) and IFN-γ/tumor necrosis factor alpha, as well as CD8 T cells expressing IFN-γ, were detected in the spleens of i.n. vaccinated mice. Using PCR arrays, significantly elevated levels of IFN-γ, interleukin-9 (IL-9), IL-11, and IL-21 expression were also seen in the spleen at 8 months after respiratory BCG immunization. Overall, while i.n. BCG vaccination provided short-term enhancement of protection in the lung relative to s.c. immunization, potent and extremely persistent splenic protective responses were seen for at least 10 months following respiratory immunization.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Bijay K. Jha ◽  
Sanjay Varikuti ◽  
Gabriella R. Seidler ◽  
Greta Volpedo ◽  
Abhay R. Satoskar ◽  
...  

ABSTRACT Chagas disease, caused by the intracellular protozoan parasite Trypanosoma cruzi, is a public health problem affecting 6 to 8 million people, mainly in Latin America. The role of microRNAs in the pathogenesis of Chagas disease has not been well described. Here, we investigate the role of microRNA-155 (miR-155), a proinflammatory host innate immune regulator responsible for T helper type 1 and type 17 (Th1 and Th17) development and macrophage responses during T. cruzi infection. For this, we compared the survival and parasite growth and distribution in miR-155−/− and wild-type (WT) C57BL/6 mice. The lack of miR-155 caused robust parasite infection and diminished survival of infected mice, while WT mice were resistant to infection. Immunological analysis of infected mice indicated that, in the absence of miR-155, there was decreased interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. In addition, we found that there was a significant reduction of CD8-positive (CD8+) T cells, natural killer (NK) cells, and NK-T cells and increased accumulation of neutrophils and inflammatory monocytes in miR-155−/− mice. Collectively, these data indicate that miR-155 is an important immune regulatory molecule critical for the control of T. cruzi infection.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Marcela Hernández-Torres ◽  
Rogério Silva do Nascimento ◽  
Monica Cardozo Rebouças ◽  
Alexandra Cassado ◽  
Kely Catarine Matteucci ◽  
...  

AbstractChagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/−, Bim−/− mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim−/− mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/− mice. At the peak of parasitemia, peritoneal macrophages of Bim−/− mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim−/− splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim−/− mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim−/− mice and place Bim as an important protein in the control of T. cruzi infections.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Sign in / Sign up

Export Citation Format

Share Document