scholarly journals Chemokines and Antimicrobial Peptides Have acag-Dependent Early Response to Helicobacter pylori Infection in Primary Human Gastric Epithelial Cells

2014 ◽  
Vol 82 (7) ◽  
pp. 2881-2889 ◽  
Author(s):  
Pascale Mustapha ◽  
Isabelle Paris ◽  
Magali Garcia ◽  
Cong Tri Tran ◽  
Julie Cremniter ◽  
...  

ABSTRACTHelicobacter pyloriinfection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. Thecagpathogenicity island (cagPAI) ofH. pyloriallows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response toH. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells withH. pyloriB128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models withH. pyloriB128ΔcagM, acagPAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells withH. pylori, inflammatory-mediator production was largely due tocagPAI substrate-independent virulence factors. Thus,H. pyloricagPAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation duringH. pyloriinfection.

2016 ◽  
Vol 84 (5) ◽  
pp. 1526-1535 ◽  
Author(s):  
Nele de Klerk ◽  
Lisa Maudsdotter ◽  
Hanna Gebreegziabher ◽  
Sunil D. Saroj ◽  
Beatrice Eriksson ◽  
...  

The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of whichLactobacillusspecies are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment ofHelicobacter pylorito host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogenH. pylori. In a screen withLactobacillusisolates, we found that only a few could reduce adherence ofH. pylorito gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act onH. pyloridirectly by an effector molecule that is released into the medium. This effector molecule acts onH. pyloriby inhibiting expression of the adhesin-encoding genesabA. Finally, we verified that inhibitory lactobacilli reducedH. pyloricolonization in anin vivomodel. In conclusion, certainLactobacillusstrains affect pathogen adherence by inhibitingsabAexpression and thereby reducingH. pyloribinding capacity.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Alevtina Gall ◽  
Ryan G. Gaudet ◽  
Scott D. Gray-Owen ◽  
Nina R. Salama

ABSTRACT Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, causing inflammation which, in some cases, leads to gastric ulcers and cancer. The clinical outcome of infection depends on a complex interplay of bacterial, host genetic, and environmental factors. Although H. pylori is recognized by both the innate and adaptive immune systems, this rarely results in bacterial clearance. Gastric epithelial cells are the first line of defense against H. pylori and alert the immune system to bacterial presence. Cytosolic delivery of proinflammatory bacterial factors through the cag type 4 secretion system ( cag -T4SS) has long been appreciated as the major mechanism by which gastric epithelial cells detect H. pylori . Classically attributed to the peptidoglycan sensor NOD1, recent work has highlighted the role of NOD1-independent pathways in detecting H. pylori ; however, the bacterial and host factors involved have remained unknown. Here, we show that bacterially derived heptose-1,7-bisphosphate (HBP), a metabolic precursor in lipopolysaccharide (LPS) biosynthesis, is delivered to the host cytosol through the cag -T4SS, where it activates the host tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA)-dependent cytosolic surveillance pathway. This response, which is independent of NOD1, drives robust NF-κB-dependent inflammation within hours of infection and precedes NOD1 activation. We also found that the CagA toxin contributes to the NF-κB-driven response subsequent to TIFA and NOD1 activation. Taken together, our results indicate that the sequential activation of TIFA, NOD1, and CagA delivery drives the initial inflammatory response in gastric epithelial cells, orchestrating the subsequent recruitment of immune cells and leading to chronic gastritis. IMPORTANCE H. pylori is a globally prevalent cause of gastric and duodenal ulcers and cancer. H. pylori antibiotic resistance is rapidly increasing, and a vaccine remains elusive. The earliest immune response to H. pylori is initiated by gastric epithelial cells and sets the stage for the subsequent immunopathogenesis. This study revealed that host TIFA and H. pylori -derived HBP are critical effectors of innate immune signaling that account for much of the inflammatory response to H. pylori in gastric epithelial cells. HBP is delivered to the host cell via the cag -T4SS at a time point that precedes activation of the previously described NOD1 and CagA inflammatory pathways. Manipulation of the TIFA-driven immune response in the host and/or targeting of ADP-heptose biosynthesis enzymes in H. pylori may therefore provide novel strategies that may be therapeutically harnessed to achieve bacterial clearance.


2008 ◽  
Vol 57 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Richard H. Argent ◽  
Rachael J. Thomas ◽  
Darren P. Letley ◽  
Michael G. Rittig ◽  
Kim R. Hardie ◽  
...  

The Helicobacter pylori virulence factors CagA and VacA are implicated in the development of gastroduodenal diseases. Most strains possessing CagA also possess the more virulent vacuolating form of VacA. This study assessed the significance of possession of both virulence factors in terms of their effect on gastric epithelial cells, using a set of minimally passaged, isogenic VacA, CagA and CagE mutants in H. pylori strains 60190 and 84-183. The cagA and cagE mutants were found to significantly increase VacA-induced vacuolation of epithelial cells, and the vacA mutants significantly increased CagA-induced cellular elongations, compared with wild-type strains, indicating that CagA reduces vacuolation and VacA reduces hummingbird formation. Although epithelial cells incubated with the wild-type H. pylori strains may display both vacuolation and hummingbird formation, it was found that (i) hummingbird length was significantly reduced in vacuolated cells compared with those without vacuolation; (ii) the number of vacuoles was significantly reduced in vacuolated cells with hummingbird formation compared with those without hummingbirds; and (iii) cells displaying extensive vacuolation did not subsequently form hummingbirds and vice versa. VacA did not affect the phosphorylation of CagA. These data show that VacA and CagA downregulate each other's effects on epithelial cells, potentially allowing H. pylori interaction with cells whilst avoiding excessive cellular damage.


2013 ◽  
Vol 81 (7) ◽  
pp. 2468-2477 ◽  
Author(s):  
Alexander Sheh ◽  
Rupesh Chaturvedi ◽  
D. Scott Merrell ◽  
Pelayo Correa ◽  
Keith T. Wilson ◽  
...  

ABSTRACTWhileHelicobacter pyloriinfects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors inH. pyloripathogenesis, global gene expression of sixH. pyloriisolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factorscagA,vacA, andbabBand were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin ofH. pyloristrains may promote increased gastric disease.


2012 ◽  
Vol 80 (5) ◽  
pp. 1823-1833 ◽  
Author(s):  
Dah-Yuu Lu ◽  
Hui-Chen Chen ◽  
Mei-Shiang Yang ◽  
Yuan-Man Hsu ◽  
Hwai-Jeng Lin ◽  
...  

ABSTRACTHelicobacter pyloriinfection is thought to be involved in the development of several gastric diseases. TwoH. pylorivirulence factors (vacuolating cytotoxin A and cytotoxin-associated gene A) reportedly interact with lipid rafts in gastric epithelial cells. The role of Toll-like receptor (TLR)-mediated signaling in response toH. pyloriinfection has been investigated extensively in host cells. However, the receptor molecules in lipid rafts that are involved inH. pylori-induced innate sensing have not been well characterized. This study investigated whether lipid rafts play a role inH. pylori-induced ceramide secretion and TLR4 expression and thereby contribute to inflammation in gastric epithelial cells. We observed that both TLR4 and MD-2 mRNA and protein levels were significantly higher inH. pylori-infected AGS cells than in mock-infected cells. Moreover, significantly more TLR4 protein was detected in detergent-resistant membranes extracted fromH. pylori-infected AGS cells than in those extracted from mock-infected cells. However, this effect was attenuated by the treatment of cells with cholesterol-usurping agents, suggesting thatH. pylori-induced TLR4 signaling is dependent on cholesterol-rich microdomains. Similarly, the level of cellular ceramide was elevated and ceramide was translocated into lipid rafts afterH. pyloriinfection, leading to interleukin-8 (IL-8) production. Using the sphingomyelinase inhibitor imipramine, we observed thatH. pylori-induced TLR4 expression was ceramide dependent. These results indicate the mobilization of ceramide and TLR4 into lipid rafts byH. pyloriinfection in response to inflammation in gastric epithelial cells.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Annelie Olofsson ◽  
Lars Nygård Skalman ◽  
Ikenna Obi ◽  
Richard Lundmark ◽  
Anna Arnqvist

ABSTRACTBacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells.Helicobacter pyloriis a gastric pathogen that infects half of the world’s population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles fromH. pyloriare internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as well as in a cholesterol-sensitive manner. We analyzed the uptake ofH. pylorivesicles by gastric epithelial cells using a method that we refer to as quantification of internalized substances (qIS). The qIS assay is based on a near-infrared dye with a cleavable linker that enables the specific quantification of internalized substances after exposure to reducing conditions. Both chemical inhibition and RNA interference in combination with the qIS assay showed thatH. pylorivesicles enter gastric epithelial cells via both clathrin-mediated endocytosis and additional endocytic processes that are dependent on dynamin. Confocal microscopy revealed thatH. pylorivesicles colocalized with clathrin and dynamin II and with markers of subsequent endosomal and lysosomal trafficking. Interestingly, however, knockdown of components required for caveolae had no significant effect on internalization and knockdown of components required for clathrin-independent carrier (CLIC) endocytosis increased internalization ofH. pylorivesicles. Furthermore, uptake of vesicles by both clathrin-dependent and -independent pathways was sensitive to depletion, but not sequestering, of cholesterol in the host cell membrane suggesting that membrane fluidity influences the efficiency ofH. pylorivesicle uptake.IMPORTANCEBacterial vesicles act as long-distance tools to deliver toxins and effector molecules to host cells. Vesicles can cause a variety of host cell responses via cell surface-induced cell signaling or internalization. Vesicles of diverse bacterial species enter host cells via different endocytic pathways or via membrane fusion. With the combination of a fluorescence-based quantification assay that quantifies internalized vesicles in a large number of cells and either chemical inhibition or RNA interference, we show that clathrin-mediated endocytosis is the major pathway for uptake ofHelicobacter pylorivesicles and that lipid microdomains of the host cell membrane affect uptake of vesicles via clathrin-independent pathways. Our results provide important insights about membrane fluidity and its important role in the complex process that directs theH. pylorivesicle to a specific endocytic pathway. Understanding the mechanisms that operate in vesicle-host interactions is important to fully recognize the impact of vesicles in pathogenesis.


2021 ◽  
Vol 9 (8) ◽  
pp. 1748
Author(s):  
Karin Taxauer ◽  
Youssef Hamway ◽  
Anna Ralser ◽  
Alisa Dietl ◽  
Karin Mink ◽  
...  

The gastric pathogen Helicobacter pylori infects half of the world’s population and is a major risk factor for gastric cancer development. In order to attach to human gastric epithelial cells and inject the oncoprotein CagA into host cells, H. pylori utilizes the outer membrane protein HopQ that binds to the cell surface protein CEACAM, which can be expressed on the gastric mucosa. Once bound, H. pylori activates a number of signaling pathways, including canonical and non-canonical NF-κB. We investigated whether HopQ–CEACAM interaction is involved in activating the non-canonical NF-κB signaling pathway. Different gastric cancer cells were infected with the H. pylori wild type, or HopQ mutant strains, and the activation of non-canonical NF-κB was related to CEACAM expression levels. The correlation between CEACAM levels and the activation of non-canonical NF-κB was confirmed in human gastric tissue samples. Taken together, our findings show that the HopQ–CEACAM interaction is important for activation of the non-canonical NF-κB pathway in gastric epithelial cells.


mSphere ◽  
2021 ◽  
Author(s):  
Dharmendra Kashyap ◽  
Budhadev Baral ◽  
Shweta Jakhmola ◽  
Anil Kumar Singh ◽  
Hem Chandra Jha

In the present study, we evaluated the synergistic effects of EBV and H. pylori infection on gastric epithelial cells in various coinfection models. These coinfection models were among the first to depict the exposures of gastric epithelial cells to EBV followed by H. pylori ; however, coinfection models exist that narrated the scenario upon exposure to H. pylori followed by that to EBV.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Saurabh Pandey ◽  
Hem Chandra Jha ◽  
Sanket Kumar Shukla ◽  
Meghan K. Shirley ◽  
Erle S. Robertson

ABSTRACT Helicobacter pylori and Epstein-Barr virus (EBV) are two well-known contributors to cancer and can establish lifelong persistent infection in the host. This leads to chronic inflammation, which also contributes to development of cancer. Association with H. pylori increases the risk of gastric carcinoma, and coexistence with EBV enhances proliferation of infected cells. Further, H. pylori -EBV coinfection causes chronic inflammation in pediatric patients. We have established an H. pylori -EBV coinfection model system using human gastric epithelial cells. We showed that H. pylori infection can increase the oncogenic phenotype of EBV-infected cells and that the cytotoxin-associated gene (CagA) protein encoded by H. pylori stimulated EBV-mediated cell proliferation in this coinfection model system. This led to increased expression of DNA methyl transferases (DNMTs), which reprogrammed cellular transcriptional profiles, including those of tumor suppressor genes (TSGs), through hypermethylation. These findings provide new insights into a molecular mechanism whereby cooperativity between two oncogenic agents leads to enhanced oncogenic activity of gastric cancer cells. IMPORTANCE We have studied the cooperativity between H. pylori and EBV, two known oncogenic agents. This led to an enhanced oncogenic phenotype in gastric epithelial cells. We now demonstrate that EBV-driven epigenetic modifications are enhanced in the presence of H. pylori , more specifically, in the presence of its CagA secretory antigen. This results in increased proliferation of the infected gastric cells. Our findings now elucidate a molecular mechanism whereby expression of cellular DNA methyl transferases is induced influencing infection by EBV. Hypermethylation of the regulatory genomic regions of tumor suppressor genes results in their silencing. This drastically affects the expression of cell cycle, apoptosis, and DNA repair genes, which dysregulates their associated processes, and promotion of the oncogenic phenotype.


2020 ◽  
Vol 295 (32) ◽  
pp. 11082-11098 ◽  
Author(s):  
Ibrahim M. Sayed ◽  
Ayse Z. Sahan ◽  
Tatiana Venkova ◽  
Anirban Chakraborty ◽  
Dibyabrata Mukhopadhyay ◽  
...  

Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.


Sign in / Sign up

Export Citation Format

Share Document