scholarly journals Novel Apoptosis-Inducing Activity inBacteroides forsythus: a Comparative Study with Three Serotypes of Actinobacillus actinomycetemcomitans

2000 ◽  
Vol 68 (8) ◽  
pp. 4611-4615 ◽  
Author(s):  
Shinichi Arakawa ◽  
Takuma Nakajima ◽  
Hiroaki Ishikura ◽  
Shizuko Ichinose ◽  
Isao Ishikawa ◽  
...  

ABSTRACT Bacteroides forsythus, which has been reported to be associated with periodontitis but has not been recognized as a key pathogen, was found to induce cytolytic activity against HL-60 and other human leukemic cells. This cytolytic activity was demonstrated according to three different criteria: (i) loss of both mitochondrial membrane potential and membrane integrity in cells treated with bacterial extracts and then with Rh123 and propidium iodide, respectively, as demonstrated by flow cytometry; (ii) damage to cytoplasmic membrane, as revealed by scanning electron microscopy (SEM); and (iii) DNA ladder formation and activation of caspase-3. These results indicate that B. forsythus produced an apoptosis-inducing factor(s) found to be composed of protein as judged by heat and trypsin sensitivity. In addition to extracts from B. forsythus, the culture supernatant of this bacterium has the ability to induce a cytolytic effect against peripheral white blood cells, especially lymphocytes. For comparison with B. forsythus, the same analyses were applied to two strains with different serotypes ofActinobacillus actinomycetemcomitans, serotypes a (ATCC 43717) and c (ATCC 43719), in addition to previously reported apoptosis-inducing serotype b (ATCC 43718), which was used as a positive control. The strains of A. actinomycetemcomitansserotypes a and b induced apoptosis in HL-60 cells as judged by the above three criteria but to a slightly lesser extent than did B. forsythus, while the serotype c strain produced apoptosis to a negligible extent. Detailed SEM images showed that the A. actinomycetemcomitans serotype a strain induced large-pore formation and the serotype b strain produced small pores with typical blebbing, while B. forsythus induced severe membrane ruffling. Further DNA ladder formation and caspase-3 activation were observed in the serotype a and b strains but not in the serotype c strain. The present paper is the first report of a protein factor(s) from B. forsythus and the A. actinomycetemcomitans serotype a strain which induces apoptotic cell death.

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7430
Author(s):  
Sharmila Kameyanda Poonacha ◽  
Madhyastha Harishkumar ◽  
Madhyastha Radha ◽  
Remya Varadarajan ◽  
Suchetha Kumari Nalilu ◽  
...  

Oroxylum indicum, of the Bignoniaceae family, has various ethnomedical uses such as an astringent, anti-inflammatory, anti-bronchitis, anti-helminthic and anti-microbial, including anticancer properties. The druggability of OI stem bark extract was determined by its molecular docking interactions with PARP and Caspase-3, two proteins involved in cell survival and death. Note that 50 µg/mL of Oroxylum indicum extract (OIE) showed a significant (p < 0.05%) toxicity to HSC-3 cells. MTT aided cell viability and proliferation assay demonstrated that 50 µg/mL of OIE displayed significant (p < 0.5%) reduction in cell number at 4 h of incubation time. Cell elongation and spindle formation was noticed when HSC-3 cells were treated with 50 µg/mL of OIE. OIE initiated DNA breakage and apoptosis in HSC-3 cells, as evident from DNA ladder assay and calcein/EB staining. Apoptosis potential of OIE is confirmed by flow cytometer and triple-staining (live cell/apoptosis/necrosis) assay. Caspase-3/7 fluorescence quenching (LANCE) assay demonstrated that 50 µg/mL of OIE significantly enhanced the RFU of caspases-3/7, indicating that the apoptosis potential of OIE is probably through the activation of caspases. Immuno-cytochemistry of HSC-3 cells treated with 50 µg/mL of OIE showed a significant reduction in mitochondrial bodies as well as a reduction in RFU in 60 min of incubation time. Immunoblotting studies clearly showed that treatment of HSC-3 cells with OI extract caused caspase-3 activation and PARP deactivation, resulting in apoptotic cell death. Overall, our data indicate that OIE is an effective apoptotic agent for human squamous carcinoma cells and it could be a future cancer chemotherapeutic target.


Blood ◽  
2019 ◽  
Vol 133 (20) ◽  
pp. 2222-2232 ◽  
Author(s):  
Jung Kwon Lee ◽  
SungMyung Kang ◽  
Xidi Wang ◽  
Jesusa L. Rosales ◽  
Xu Gao ◽  
...  

Abstract l-Asparaginase (l-ASNase) is a strategic component of treatment protocols for acute lymphoblastic leukemia (ALL). It causes asparagine deficit, resulting in protein synthesis inhibition and subsequent leukemic cell death and ALL remission. However, patients often relapse because of the development of resistance, but the underlying mechanism of ALL cell resistance to l-asparaginase remains unknown. Through unbiased genome-wide RNA interference screening, we identified huntingtin associated protein 1 (HAP1) as an ALL biomarker for l-asparaginase resistance. Knocking down HAP1 induces l-asparaginase resistance. HAP1 interacts with huntingtin and the intracellular Ca2+ channel, inositol 1,4,5-triphosphate receptor to form a ternary complex that mediates endoplasmic reticulum (ER) Ca2+ release upon stimulation with inositol 1,4,5-triphosphate3. Loss of HAP1 prevents the formation of the ternary complex and thus l-asparaginase-mediated ER Ca2+ release. HAP1 loss also inhibits external Ca2+ entry, blocking an excessive rise in [Ca2+]i, and reduces activation of the Ca2+-dependent calpain-1, Bid, and caspase-3 and caspase-12, leading to reduced number of apoptotic cells. These findings indicate that HAP1 loss prevents l-asparaginase–induced apoptosis through downregulation of the Ca2+-mediated calpain-1-Bid-caspase-3/12 apoptotic pathway. Treatment with BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester)] reverses the l-asparaginase apoptotic effect in control cells, supporting a link between l-asparaginase-induced [Ca2+]i increase and apoptotic cell death. Consistent with these findings, ALL patient leukemic cells with lower HAP1 levels showed resistance to l-asparaginase, indicating the clinical relevance of HAP1 loss in the development of l-asparaginase resistance, and pointing to HAP1 as a functional l-asparaginase resistance biomarker that may be used for the design of effective treatment of l-asparaginase-resistant ALL.


2020 ◽  
Vol 13 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Saeed Samarghandian ◽  
Kiavash Hushmandi ◽  
Amirhossein Zabolian ◽  
Md Shahinozzaman ◽  
...  

Background: Ischemia/reperfusion (I/R) injury is a serious pathologic event that occurs due to restriction in blood supply to an organ, followed by hypoxia. This condition leads to enhanced levels of pro-inflammatory cytokines such as IL-6 and TNF-, and stimulation of oxidative stress via enhancing reactive oxygen species (ROS) levels. Upon reperfusion, blood supply increases, but it deteriorates condition, and leads to generation of ROS, cell membrane disruption and finally, cell death. Plant derived-natural compounds are well-known due to their excellent antioxidant and anti-inflammatory activities. Quercetin is a flavonoid exclusively found in different vegetables, herbs, and fruits. This naturally occurring compound possesses different pharmacological activities making it appropriate option in disease therapy. Quercetin can also demonstrate therapeutic effects via affecting molecular pathways such as NF-B, PI3K/Akt and so on. Methods: In the present review, we demonstrate that quercetin administration is beneficial in ameliorating I/R injury via reducing ROS levels, inhibition of inflammation, and affecting molecular pathways such as TLR4/NF-B, MAPK and so on. Results and conclusion: Quercetin can improve cell membrane integrity via decreasing lipid peroxidation. Apoptotic cell death is inhibited by quercetin via down-regulation of Bax, and caspases, and upregulation of Bcl-2. Quercetin is able to modulate autophagy (inhibition/induction) in decreasing I/R injury. Nanoparticles have been applied for delivery of quercetin, enhancing its bioavailability and efficacy in alleviation of I/R injury. Noteworthy, clinical trials have also confirmed the capability of quercetin in reducing I/R injury.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Senthil Nagarajan ◽  
Jae Kwon Lee

AbstractSesamolin is one of the lignans derived from sesame oil. It has demonstrated significant antioxidant, anti-aging, and anti-mutagenic properties. It also reportedly augments natural killer (NK) cell lysis activity. We previously reported that sesamolin also exerts anticancer effects in vitro and induces enhanced NK cell cytolytic activity against tumor cells. Herein, we aimed to determine the mechanism by which sesamolin prevents and retards tumorigenesis in BALB/c mouse models of leukemia induced by murine (BALB/c) myelomonocytic leukemia WEHI-3B cells. Banded neutrophils, myeloblasts, and monocytic leukemic cells were more abundant in the leukemia model than in normal mice. Sesamolin decreased the number of leukemic cells by almost 60% in the leukemia model mice in vivo; additionally, sesamolin and the positive control drug, vinblastine, similarly hindered neoplastic cell proliferation. Spleen samples were ~ 4.5-fold heavier in leukemic mice than those obtained from normal mice, whereas spleen samples obtained from leukemic mice treated with sesamolin had a similar weight to those of normal mice. Moreover, sesamolin induced a twofold increase in the cytotoxic activity of leukemic mouse NK cells against WEHI-3B cells. These results indicated that sesamolin exerts anti-leukemic effects in vivo.


2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2015 ◽  
Vol 309 (3) ◽  
pp. E275-E282 ◽  
Author(s):  
Yanqing Zhang ◽  
Jianli Zhao ◽  
Rui Li ◽  
Wayne Bond Lau ◽  
Yue-Xing Yuan ◽  
...  

Adiponectin (APN) is a cardioprotective molecule. Its reduction in diabetes exacerbates myocardial ischemia/reperfusion (MI/R) injury. Although APN administration in animals attenuates MI/R injury, multiple factors limit its clinical application. The current study investigated whether AdipoRon, the first orally active molecule that binds APN receptors, may protect the heart against MI/R injury, and if so, to delineate the involved mechanisms. Wild-type (WT), APN knockout (APN-KO), and cardiomyocyte specific-AMPK dominant negative (AMPK-DN) mice were treated with vehicle or AdipoRon (50 mg/kg, 10 min prior to MI) and subjected to MI/R (30 min/3–24 h). Compared with vehicle, oral administration of AdipoRon to WT mice significantly improved cardiac function and attenuated postischemic cardiomyocyte apoptosis, determined by DNA ladder formation, TUNEL staining, and caspase-3 activation (all P < 0.01). MI/R-induced apoptotic cell death was significantly enhanced in mice deficient in either APN (APN-KO) or AMPK (AMPK-DN). In APN-KO mice, AdipoRon attenuated MI/R injury to the same degree as observed in WT mice. In AMPK-DN mice, AdipoRon's antiapoptotic action was partially inhibited but not lost. Finally, AdipoRon significantly attenuated postischemic oxidative stress, as evidenced by reduced NADPH oxidase expression and superoxide production. Collectively, these results demonstrate for the first time that AdipoRon, an orally active APN receptor activator, effectively attenuated postischemic cardiac injury, supporting APN receptor agonists as a promising novel therapeutic approach treating cardiovascular complications caused by obesity-related disorders such as type 2 diabetes.


2001 ◽  
Vol 79 (11) ◽  
pp. 953-958 ◽  
Author(s):  
Ellyawati Candra ◽  
Kimihiro Matsunaga ◽  
Hironori Fujiwara ◽  
Yoshihiro Mimaki ◽  
Yutaka Sashida ◽  
...  

Two steroidal saponins, tigogenin hexasaccharide-1 (TGHS-1, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside) and tigogenin hexasaccharide-2 (TGHS-2, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (β-D-glucopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside), were isolated from the fresh bulbs of Camassia cusickii. In murine leukemic L1210 cells, both compounds showed cytotoxicity with an EC50 value of 0.06 µM. The morphological observation revealed that TGHS-1 and TGHS-2 induced shrinkage in cell soma and chromatin condensation, suggesting apoptotic cell death. The cell death was confirmed to be apoptosis by Annexin V binding to phosphatidylserine in the cell membrane and excluding propidium iodide. A typical apoptotic DNA ladder and the cleavage of caspase-3 were observed after treatment with TGHS-1 and TGHS-2. In the presence of both the compounds, cells with sub-G1 DNA content were detected by flow cytometric analysis, indicating that TGHS-1 and TGHS-2 (each EC50 value of 0.1 µM) are the most powerful apoptotic saponins known. These results suggest that TGHS-1 and TGHS-2 induce apoptotic cell death through caspase-3 activation.Key words: steroidal saponin, tigogenin hexasaccharide, apoptosis, DNA fragmentation, murine leukemic L1210 cells.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Sweena Parmar ◽  
Xiaokun Geng ◽  
Changya Peng ◽  
Murali Guthikonda ◽  
Yuchuan Ding

Objectives: Normobaric oxygenation (NBO) has been shown to provide neuroprotection in vivo and in vitro . Yet, a recent Phase 2 clinical trial investigating NBO therapy in acute ischemic stroke was terminated due to questionable therapeutic benefit. NBO therapy alone may be insufficient to produce improved outcomes. In our recent study, we demonstrated a strong neuroprotective effect of ethanol at a dose of 1.5 g/kg (equivalent to the human legal driving limit). In this study, we sought to identify whether low-dose ethanol administration enhances the neuroprotection offered by NBO and whether combined administration of NBO with ethanol is associated with reduced apoptosis. Methods: Sprague-Dawley rats were subjected to right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion. Ischemic animals received either an intraperitoneal injection of 1.0 g/kg ethanol, 2 h of 100% NBO, or both ethanol and NBO. The Cell Death Detection ELISA Assay (Roche) was performed to determine apoptotic cell death at 24 h after reperfusion. Levels of pro-apoptotic (Caspase-3, Bcl-2-associated X-BAX, and Apoptosis-Inducing Factor-AIF) and anti-apoptotic proteins (Bcl-2 and Bcl-xL) were determined by Western blot analysis at 3 and 24 h after reperfusion. Results: As expected, untreated ischemic rats had the highest apoptotic cell death. Combined NBO/ethanol therapy decreased cell death by 48%, as compared to 29% with ethanol and 22% with NBO. Similarly, combined NBO/ethanol therapy promoted the greatest expression of anti-apoptotic factors and the lowest expression of pro-apoptotic proteins at 3 h after reperfusion. This effect was maintained at 24 h and even more pronounced for AIF and Caspase-3. Conclusions: Given singularly, NBO and ethanol improved the degree of cell death, decreased the expression of pro-apoptotic proteins, and increased the expression of anti-apoptotic proteins. Yet, when administered together, their effects largely compounded. These results suggest a synergistic neuroprotection offered by NBO with ethanol, which may be attributed at least in part to their shared role in modulating neuronal apoptosis.


2012 ◽  
Vol 2 (1) ◽  
pp. 6 ◽  
Author(s):  
Marie Klauser ◽  
Franck Forterre ◽  
Marcus Doherr ◽  
Andreas Zurbriggen ◽  
David Spreng ◽  
...  

Disc degeneration occurs commonly in dogs. A variety of factors is thought to contribute an inappropriate disc matrix that isolate cells in the disc and lead to apoptosis. Disc herniation with radiculopathy and discogenic pain are the results of the degenerative process. The objective of this prospective study was to determine the extent of apoptosis in intact and herniated intervertebral discs of chondrodystrophic dogs and non-chondrodystrophic dogs. In addition, the nucleus pulposus (NP) was histologically compared between non-chondrodystrophic and chondrodystrophic dogs. Thoracolumbar intervertebral discs and parts of the extruded nucleus pulposus were harvested from 45 dogs. Samples were subsequently stained with haematoxylin-eosin and processed to detect cleaved caspase-3 and poly(ADP-ribose) polymerase. A significant greater degree of apoptosis was observed in herniated NPs of chondrodystrophic dogs compared to non- chondrodystrophic dogs with poly (ADP-ribose) polymerase and cleaved caspase- 3 detection. Within the group of chondrodystrophic dogs, dogs with an intact disc and younger than 6 years showed a significant lower incidence of apoptosis in the NP compared to the herniated NP of chondrodystrophic dogs. The extent of apoptosis in the annulus fibrosus was not different between the intact disc from chondrodystrophic and non- chondrodystrophic dogs. An age-related increase of apoptotic cells in NP and annulus fibrosus was found in the intact non-herniated intervertebral discs. Histologically, absence of notochordal cells and occurrence of chondroid metaplasia were observed in the nucleus pulposus of chondrodystrophic dogs. As a result, we found that apoptosis plays a role in disc degeneration in chondrodystrophic dogs.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


Sign in / Sign up

Export Citation Format

Share Document