scholarly journals The Global Regulator ArcA Modulates Expression of Virulence Factors in Vibrio cholerae

2003 ◽  
Vol 71 (10) ◽  
pp. 5583-5589 ◽  
Author(s):  
Nilanjan Sengupta ◽  
Kalidas Paul ◽  
Rukhsana Chowdhury

ABSTRACT A Vibrio cholerae arcA mutant was constructed and used to examine the role of the global anaerobiosis response regulator ArcA in the expression of virulence factors in this important human pathogen. In V. cholerae, expression of the major virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) is regulated by the transcriptional activator ToxT. toxT expression, in turn, is controlled by the transmembrane DNA binding proteins ToxR and TcpP. In the V. cholerae arcA mutant, although ToxR and TcpP were unaffected, Northern blot and reverse transcription-PCR analyses indicated that the expression of toxT was significantly decreased with concomitant reduction in the expression of CT and TCP. CT and TCP expression was completely restored in the V. cholerae arcA mutant strain by expressing a cloned toxT gene in the mutant. These results suggest that ArcA functions as a positive regulator of toxT expression under both aerobic and anaerobic conditions, although as expected, the effect was more pronounced during anaerobic growth. This was reflected in a reduction of virulence of the V. cholerae arcA mutant strain in the infant mouse cholera model.

2002 ◽  
Vol 70 (7) ◽  
pp. 3419-3426 ◽  
Author(s):  
Alexandra R. Mey ◽  
Elizabeth E. Wyckoff ◽  
Amanda G. Oglesby ◽  
Eva Rab ◽  
Ronald K. Taylor ◽  
...  

ABSTRACT The gram-negative enteric pathogen Vibrio cholerae requires iron for growth. V. cholerae has multiple iron acquisition systems, including utilization of heme and hemoglobin, synthesis and transport of the catechol siderophore vibriobactin, and transport of several siderophores that it does not itself make. One siderophore that V. cholerae transports, but does not make, is enterobactin. Enterobactin transport requires TonB and is independent of the vibriobactin receptor ViuA. In this study, two candidate enterobactin receptor genes, irgA (VC0475) and vctA (VCA0232), were identified by analysis of the V. cholerae genomic sequence. A single mutation in either of these genes did not significantly impair enterobactin utilization, but a strain defective in both genes did not use enterobactin. When either irgA or vctA was supplied on a plasmid, the ability of the irgA vctA double mutant to use enterobactin was restored. This indicates that both VctA and IrgA transport enterobactin. We also identify the genes vctPDGC, which are linked to vctA and encode a periplasmic binding protein-dependent ABC transport system that functions in the utilization of both enterobactin and vibriobactin (VCA0227-0230). An irgA::TnphoA mutant strain, MBG40, was shown in a previous study to be highly attenuated and to have a strong colonization defect in an infant mouse model of V. cholerae infection (M. B. Goldberg, V. J. DiRita, and S. B. Calderwood, Infect. Immun. 58:55-60, 1990). In this work, a new irgA mutation was constructed, and this mutant strain was not significantly impaired in its ability to compete with the parental strain in infant mice and was not attenuated for virulence in an assay of 50% lethal dose. These data indicate that the virulence defect in MBG40 is not due to the loss of irgA function and that irgA is unlikely to be an important virulence factor.


2005 ◽  
Vol 33 (1) ◽  
pp. 195-197 ◽  
Author(s):  
N.A. Filenko ◽  
D.F. Browning ◽  
J.A. Cole

HCP (hybrid-cluster protein) contains two Fe/S clusters, one of which is a hybrid [4Fe-2S-2O] cluster. Despite intensive study, its physiological function has not been reported. The Escherichia coli hcp gene is located in a two-gene operon with hcr, which encodes an NADH-dependent HCP reductase. E. coli HCP is detected after anaerobic growth with nitrate or nitrite: possible roles for it in hydroxylamine or nitric oxide reduction have been proposed. To study the regulation and role of HCP, an hcp::lacZ fusion was constructed and transformed into fnr, arcA and norR mutant strains of E. coli. Transcription from the hcp promoter was induced during anaerobic growth. Only the fnr mutant was defective in hcp expression. Nitrate- and nitrite-induced transcription from the hcp promoter was activated by the response regulator proteins NarL and NarP. Gel retardation assays were used to show that FNR (fumarate-nitrate regulation) and NarL form a complex with the hcp promoter. Transcription of the hcp-hcr operon initiates at a thymine nucleotide located 31 bp upstream of the translation-initiation codon. HCP has been overexpressed from a recombinant plasmid for physiological studies.


2003 ◽  
Vol 185 (16) ◽  
pp. 4672-4682 ◽  
Author(s):  
Shruti Haralalka ◽  
Suvobroto Nandi ◽  
Rupak K. Bhadra

ABSTRACT The relA gene product determines the level of (p)ppGpp, the effector nucleotides of the bacterial stringent response that are also involved in the regulation of other functions, like antibiotic production and quorum sensing. In order to explore the possible involvement of relA in the regulation of virulence of Vibrio cholerae, a relA homolog from the organism (relA VCH) was cloned and sequenced. The relA VCH gene encodes a 738-amino-acid protein having functions similar to those of other gram-negative bacteria, including Escherichia coli. A ΔrelA::kan allele was generated by replacing ∼31% of the open reading frame of wild-type relA of V. cholerae El Tor strain C6709 with a kanamycin resistance gene. The V. cholerae relA mutant strain thus generated, SHK17, failed to accumulate (p)ppGpp upon amino acid deprivation. Interestingly, compared to the wild type, C6709, the mutant strain SHK17 exhibited significantly reduced in vitro production of two principal virulence factors, cholera toxin (CT) and toxin-coregulated pilus (TCP), under virulence gene-inducing conditions. In vivo experiments carried out in rabbit ileal loop and suckling mouse models also confirmed our in vitro results. The data suggest that (p)ppGpp is essential for maximal expression of CT and TCP during in vitro growth, as well as during intestinal infection by virulent V. cholerae. Northern blot and reverse transcriptase PCR analyses indicated significant reduction in the transcript levels of both virulence factors in the relA mutant strain SHK17. Such marked alteration of virulence phenotypes in SHK17 appears most likely to be due to down regulation of transcript levels of toxR and toxT, the two most important virulence regulatory genes of V. cholerae. In SHK17, the altered expression of the two outer membrane porin proteins, OmpU and OmpT, indicated that the relA mutation most likely affects the ToxR-dependent virulence regulatory pathway, because it had been shown earlier that ToxR directly regulates their expression independently of ToxT.


2002 ◽  
Vol 70 (11) ◽  
pp. 5990-5996 ◽  
Author(s):  
Jutta Nesper ◽  
Stefan Schild ◽  
Crystal M. Lauriano ◽  
Anita Kraiss ◽  
Karl E. Klose ◽  
...  

ABSTRACT Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a ≈30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.


2006 ◽  
Vol 74 (5) ◽  
pp. 3060-3064 ◽  
Author(s):  
Amalendu Ghosh ◽  
Kalidas Paul ◽  
Rukhsana Chowdhury

ABSTRACT Bile-mediated repression of virulence gene expression is relieved in a Vibrio cholerae hns mutant. The mutant also exhibited reduced motility due to lower flrA expression, higher in vivo production of the virulence factors, and lower colonization efficiency. The colonization defect of the mutant was due to low FlrA production.


2019 ◽  
Vol 82 (11) ◽  
pp. 1890-1895
Author(s):  
KAI-MING TSO ◽  
BIN NI ◽  
HIN-CHUNG WONG

ABSTRACT Vibrio parahaemolyticus is a prevalent seafoodborne enteropathogen that has become a global concern since the spread of its pandemic strain in 1996. This study investigates the responses of this pathogen to the oxidative disinfectants hydrogen peroxide, chlorine dioxide, and peracetic acid. Expression of the regulator genes oxyR and rpoS, determined by reverse transcription PCR, in V. parahaemolyticus wild-type, oxyR mutant, and rpoS mutant strains exhibited similar patterns in response to the tested oxidative disinfectants. The transcription of the rpoS gene was markedly enhanced in the oxyR mutant strain in the exponential phase. The expression of catalase KatE1 was tracked by using a LacZ fusion reporter in these strains. The experimental results revealed that KatE1 was a significant scavenger of hydrogen peroxide and peracetic acid in V. parahaemolyticus, and RpoS may partially compensate for the regulatory role of OxyR in the oxyR mutant strain. In contrast to its responses to hydrogen peroxide and paracetic acid, KatE1 was not the primary scavenger of chlorine dioxide in these V. parahaemolyticus strains. This study shows that these disinfectants activated a basic oxidative response in this pathogen with different features.


2004 ◽  
Vol 72 (7) ◽  
pp. 3961-3967 ◽  
Author(s):  
H. H. Krishnan ◽  
Amalendu Ghosh ◽  
Kalidas Paul ◽  
Rukhsana Chowdhury

ABSTRACT In Vibrio cholerae, the transmembrane DNA binding proteins, ToxR and TcpP, activate expression of the regulatory gene toxT in response to specific environmental signals. The resulting enhanced level of ToxT leads to a coordinated increase in the production of a subset of virulence factors, including cholera toxin (CT) and toxin-coregulated pilus (TCP). The effect of anaerobiosis on expression of the V. cholerae virulence regulatory cascade was examined. The expression of the major regulatory genes, tcpP, toxR, and toxT, in anaerobically grown V. cholerae was comparable to that in cells grown under aerobic conditions, and no significant difference in the ToxT-dependent expression of tcpA was detected when aerobic and anaerobic cultures were compared. However, in spite of the presence of functional ToxT, ctxAB expression was drastically reduced, and practically no CT was detected in cells grown under anaerobic conditions. In a V. cholerae hns mutant, however, high levels of ctxAB expression occurred even under anaerobic conditions. Also, deletion of the H-NS binding site from the ctxAB promoter eliminated anaerobic repression of ctxAB expression. These results suggest that H-NS directly represses ctxAB expression under anaerobic growth conditions. It has been reported that in the first stage of infection of infant mice by V. cholerae, tcpA is expressed but ctxAB expression is shut off (S. H. Lee, D. L. Hava, M. K. Waldor, and A. Camilli, Cell 99: 625-634, 1999). This pattern is similar to the pattern in anaerobic cultures of V. cholerae. Under all other in vitro conditions, ctxAB and tcpA are known to be coordinately expressed.


2002 ◽  
Vol 70 (10) ◽  
pp. 5355-5362 ◽  
Author(s):  
Gabriela Kovacikova ◽  
Karen Skorupski

ABSTRACT The alternative sigma factor σΕ (RpoE) is involved in the response to extracytoplasmic stress and plays a role in the virulence of a variety of different bacteria. To assess the role of σΕ in Vibrio cholerae pathogenesis, a ΔrpoE mutant was constructed and analyzed using the infant mouse model. The results here show that σΕ contributes significantly to the virulence of V. cholerae. The ΔrpoE mutant was highly attenuated with a 50% lethal dose more than 3 logs higher than that for the parental strain, and its ability to colonize the intestine was reduced approximately 30-fold. A time course of infection revealed that the number of CFU of the ΔrpoE mutant was approximately 1 log lower than that of the parental strain by 12 h postinoculation and decreased further by 24 h. The defect in virulence in the ΔrpoE mutant thus appears to be a diminished ability to survive within the intestinal environment. The results here also show that σΕ is not required for growth and survival of V. cholerae in vitro at high temperatures but is required under other stressful conditions, such as in the presence of 3% ethanol. As in Escherichia coli, the expression of rpoE in V. cholerae is dependent upon two promoters located upstream of the gene, P1 and P2. P1 appears to be σ70 dependent, whereas the downstream promoter, P2, is positively autoregulated by σΕ.


2005 ◽  
Vol 73 (12) ◽  
pp. 8167-8178 ◽  
Author(s):  
Alexandra R. Mey ◽  
Elizabeth E. Wyckoff ◽  
Vanamala Kanukurthy ◽  
Carolyn R. Fisher ◽  
Shelley M. Payne

ABSTRACT Regulation of iron uptake and utilization is critical for bacterial growth and for prevention of iron toxicity. In many bacterial species, this regulation depends on the iron-responsive master regulator Fur. In this study we report the effects of iron and Fur on gene expression in Vibrio cholerae. We show that Fur has both positive and negative regulatory functions, and we demonstrate Fur-independent regulation of gene expression by iron. Nearly all of the known iron acquisition genes were repressed by Fur under iron-replete conditions. In addition, genes for two newly identified iron transport systems, Feo and Fbp, were found to be negatively regulated by iron and Fur. Other genes identified in this study as being induced in low iron and in the fur mutant include those encoding superoxide dismutase (sodA), fumarate dehydratase (fumC), bacterioferritin (bfr), bacterioferritin-associated ferredoxin (bfd), and multiple genes of unknown function. Several genes encoding iron-containing proteins were repressed in low iron and in the fur mutant, possibly reflecting the need to reserve available iron for the most critical functions. Also repressed in the fur mutant, but independently of iron, were genes located in the V. cholerae pathogenicity island, encoding the toxin-coregulated pilus (TCP), and genes within the V. cholerae mega-integron. The fur mutant exhibited very weak autoagglutination, indicating a possible defect in expression or assembly of the TCP, a major virulence factor of V. cholerae. Consistent with this observation, the fur mutant competed poorly with its wild-type parental strain for colonization of the infant mouse gut.


2008 ◽  
Vol 75 (5) ◽  
pp. 1456-1459 ◽  
Author(s):  
Andrea L. Zbell ◽  
Robert J. Maier

ABSTRACT Double and triple uptake-type hydrogenase mutants were used to determine which hydrogenase recycles fermentatively produced hydrogen. The Δhyb Δhya and Δhyd Δhya double mutants evolved H2 at rates similar to that of the triple mutant strain, so Hya alone oxidizes the bulk of H2 produced during fermentation. When only Hya was present, no hydrogen production was observed in nutrient-limited medium. H2 uptake assays showed that Hya can oxidize both exogenously added H2 and formate hydrogen lyase-evolved H2 anaerobically. Even after anaerobic growth, all three uptake-type hydrogenases could function in the presence of oxygen, including using O2 as a terminal acceptor.


Sign in / Sign up

Export Citation Format

Share Document