scholarly journals Iron and Fur Regulation in Vibrio cholerae and the Role of Fur in Virulence

2005 ◽  
Vol 73 (12) ◽  
pp. 8167-8178 ◽  
Author(s):  
Alexandra R. Mey ◽  
Elizabeth E. Wyckoff ◽  
Vanamala Kanukurthy ◽  
Carolyn R. Fisher ◽  
Shelley M. Payne

ABSTRACT Regulation of iron uptake and utilization is critical for bacterial growth and for prevention of iron toxicity. In many bacterial species, this regulation depends on the iron-responsive master regulator Fur. In this study we report the effects of iron and Fur on gene expression in Vibrio cholerae. We show that Fur has both positive and negative regulatory functions, and we demonstrate Fur-independent regulation of gene expression by iron. Nearly all of the known iron acquisition genes were repressed by Fur under iron-replete conditions. In addition, genes for two newly identified iron transport systems, Feo and Fbp, were found to be negatively regulated by iron and Fur. Other genes identified in this study as being induced in low iron and in the fur mutant include those encoding superoxide dismutase (sodA), fumarate dehydratase (fumC), bacterioferritin (bfr), bacterioferritin-associated ferredoxin (bfd), and multiple genes of unknown function. Several genes encoding iron-containing proteins were repressed in low iron and in the fur mutant, possibly reflecting the need to reserve available iron for the most critical functions. Also repressed in the fur mutant, but independently of iron, were genes located in the V. cholerae pathogenicity island, encoding the toxin-coregulated pilus (TCP), and genes within the V. cholerae mega-integron. The fur mutant exhibited very weak autoagglutination, indicating a possible defect in expression or assembly of the TCP, a major virulence factor of V. cholerae. Consistent with this observation, the fur mutant competed poorly with its wild-type parental strain for colonization of the infant mouse gut.

2006 ◽  
Vol 188 (18) ◽  
pp. 6515-6523 ◽  
Author(s):  
Elizabeth E. Wyckoff ◽  
Alexandra R. Mey ◽  
Andreas Leimbach ◽  
Carolyn F. Fisher ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae has multiple iron acquisition systems, including TonB-dependent transport of heme and of the catechol siderophore vibriobactin. Strains defective in both of these systems grow well in laboratory media and in the infant mouse intestine, indicating the presence of additional iron acquisition systems. Previously uncharacterized potential iron transport systems, including a homologue of the ferrous transporter Feo and a periplasmic binding protein-dependent ATP binding cassette (ABC) transport system, termed Fbp, were identified in the V. cholerae genome sequence. Clones encoding either the Feo or the Fbp system exhibited characteristics of iron transporters: both repressed the expression of lacZ cloned under the control of a Fur-regulated promoter in Escherichia coli and also conferred growth on a Shigella flexneri mutant that has a severe defect in iron transport. Two other ABC transporters were also evaluated but were negative by these assays. Transport of radioactive iron by the Feo system into the S. flexneri iron transport mutant was stimulated by the reducing agent ascorbate, consistent with Feo functioning as a ferrous transporter. Conversely, ascorbate inhibited transport by the Fbp system, suggesting that it transports ferric iron. The growth of V. cholerae strains carrying mutations in one or more of the potential iron transport genes indicated that both Feo and Fbp contribute to iron acquisition. However, a mutant defective in the vibriobactin, Fbp, and Feo systems was not attenuated in a suckling mouse model, suggesting that at least one other iron transport system can be used in vivo.


1998 ◽  
Vol 180 (4) ◽  
pp. 773-784 ◽  
Author(s):  
Fitnat H. Yildiz ◽  
Gary K. Schoolnik

ABSTRACT Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded byrpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of an Escherichia coli mutant by using a wild-type genomic library. Sequence analysis of the complementing clone revealed an 1.008-bp open reading frame which is predicted to encode a 336-amino-acid protein with 71 to 63% overall identity to other reported rpoS gene products. To determine the functional role of rpoS in V. cholerae, we inactivatedrpoS by homologous recombination. V. choleraestrains lacking rpoS are impaired in the ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and carbon starvation. These results suggest that rpoS may be required for the persistence of V. cholerae in aquatic habitats. In addition, the rpoSmutation led to reduced production or secretion of hemagglutinin/protease. However, rpoS is not critical for in vivo survival, as determined by an infant mouse intestinal competition assay.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2152
Author(s):  
Robin Loesch ◽  
Linda Chenane ◽  
Sabine Colnot

Chromatin remodelers are found highly mutated in cancer including hepatocellular carcinoma. These mutations frequently occur in ARID (AT-rich Interactive Domain) genes, encoding subunits of the ATP-dependent SWI/SNF remodelers. The increasingly prevalent complexity that surrounds the functions and specificities of the highly modular BAF (BG1/BRM-associated factors) and PBAF (polybromo-associated BAF) complexes, including ARID1A/B or ARID2, is baffling. The involvement of the SWI/SNF complexes in diverse tissues and processes, and especially in the regulation of gene expression, multiplies the specific outcomes of specific gene alterations. A better understanding of the molecular consequences of specific mutations impairing chromatin remodelers is needed. In this review, we summarize what we know about the tumor-modulating properties of ARID2 in hepatocellular carcinoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ricci ◽  
Sara Orazi ◽  
Federica Biancucci ◽  
Mauro Magnani ◽  
Michele Menotta

AbstractAtaxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.


2009 ◽  
Vol 191 (11) ◽  
pp. 3504-3516 ◽  
Author(s):  
Ryan S. Mueller ◽  
Sinem Beyhan ◽  
Simran G. Saini ◽  
Fitnat H. Yildiz ◽  
Douglas H. Bartlett

ABSTRACT Indole has been proposed to act as an extracellular signal molecule influencing biofilm formation in a range of bacteria. For this study, the role of indole in Vibrio cholerae biofilm formation was examined. It was shown that indole activates genes involved in vibrio polysaccharide (VPS) production, which is essential for V. cholerae biofilm formation. In addition to activating these genes, it was determined using microarrays that indole influences the expression of many other genes, including those involved in motility, protozoan grazing resistance, iron utilization, and ion transport. A transposon mutagenesis screen revealed additional components of the indole-VPS regulatory circuitry. The indole signaling cascade includes the DksA protein along with known regulators of VPS production, VpsR and CdgA. A working model is presented in which global control of gene expression by indole is coordinated through σ54 and associated transcriptional regulators.


Sign in / Sign up

Export Citation Format

Share Document