scholarly journals Autodisplay

2003 ◽  
Vol 71 (11) ◽  
pp. 6320-6328 ◽  
Author(s):  
Konstantin Rizos ◽  
Claus T. Lattemann ◽  
Dirk Bumann ◽  
Thomas F. Meyer ◽  
Toni Aebischer

ABSTRACT Live attenuated Salmonella strains expressing antigens of pathogens are promising oral vaccine candidates. There is growing evidence that the topology of expression of the foreign antigens can have a dramatic impact on the immunogenicity. We examined the potential of the AIDA-I (Escherichia coli adhesin involved in diffuse adherence) autotransporter domain to display antigenic fragments of the urease A subunit of Helicobacter pylori for the induction of a protective immune response. In the murine H. pylori model, protection is mainly mediated by CD4+ T cells, and we therefore used the AIDA-I expression system to successfully express both nearly full-length UreA and defined T-helper-cell epitopes on the surface of an attenuated Salmonella enterica serovar Typhimurium vaccine strain. Surface exposure of the large UreA fragment or of one UreA T-cell epitope mediated a significant reduction in the level of H. pylori in immunized mice after challenge infection, whereas conventional cytoplasmic expression of UreA in Salmonella had no effect. These results support the concept that surface display increases the immunogenicity of recombinant antigens expressed on oral live vaccine carriers and further demonstrate the feasibility of immunizing against H. pylori with Salmonella vaccine strains expressing CD4+ T-cell epitopes.

2006 ◽  
Vol 74 (6) ◽  
pp. 3396-3407 ◽  
Author(s):  
Sandra Hervas-Stubbs ◽  
Laleh Majlessi ◽  
Marcela Simsova ◽  
Jana Morova ◽  
Marie-Jesus Rojas ◽  
...  

ABSTRACTTB10.4 is a newly identified antigen ofMycobacterium tuberculosisrecognized by human and murine T cells upon mycobacterial infection. Here, we show that immunization withMycobacterium bovisBCG induces a strong, genetically controlled, Th1 immune response against TB10.4 in mice. BALB/c and C57BL/6 strains behave as high and low responders to TB10.4 protein, respectively. The TB10.4:74-88 peptide was identified as an immunodominant CD4+T-cell epitope forH-2dmice. Since recent results, as well as the present study, have raised interest in TB10.4 as a subunit vaccine, we analyzed immune responses induced by this antigen delivered by a new vector, the adenylate cyclase (CyaA) ofBordetella pertussis. CyaA is able to target dendritic cells and to deliver CD4+or CD8+T-cell epitopes to the major histocompatibility complex class II/I molecule presentation pathways, triggering specific Th1 or cytotoxic T-lymphocyte (CTL) responses. Several CyaA harboring either the entire TB10.4 protein or various subfragments containing the TB10.4:20-28 CTL epitope were shown to induce TB10.4-specific Th1 CD4+and CD8+T-cell responses. However, none of the recombinant CyaA, injected in the absence of adjuvant, was able to induce protection againstM. tuberculosisinfection. In contrast, TB10.4 protein administered with a cocktail of strong adjuvants that triggered a strong Th1 CD4+T-cell response induced significant protection againstM. tuberculosischallenge. These results confirm the potential value of the TB10.4 protein as a candidate vaccine and show that the presence of high frequencies of CD4+T cells specific to this strong immunogen correlates with protection againstM. tuberculosisinfection.


1993 ◽  
Vol 67 (6) ◽  
pp. 3680-3683 ◽  
Author(s):  
T M Kündig ◽  
I Castelmur ◽  
M F Bachmann ◽  
D Abraham ◽  
D Binder ◽  
...  

2008 ◽  
Vol 77 (2) ◽  
pp. 896-903 ◽  
Author(s):  
Rachel M. Stenger ◽  
Martien C. M. Poelen ◽  
Ed E. Moret ◽  
Betsy Kuipers ◽  
Sven C. M. Bruijns ◽  
...  

ABSTRACT P.69 pertactin (P.69 Prn), an adhesion molecule from the causative agent of pertussis, Bordetella pertussis, is present in cellular and most acellular vaccines that are currently used worldwide. Although both humoral immunity and cellular immunity directed against P.69 Prn have been implicated in protective immune mechanisms, the identities of CD4+ T-cell epitopes on the P.69 Prn protein remain unknown. Here, a single I-Ad-restricted B. pertussis conserved CD4+ T-cell epitope at the N terminus of P.69 Prn was identified by using a BALB/c T-cell hybridoma. The epitope appeared immunodominant among four other minor strain-conserved P.69 Prn epitopes recognized after vaccination and B. pertussis infection, and it was capable of evoking a Th1/Th17-type cytokine response. B. pertussis P.69 Prn immune splenocytes did not cross-react with natural variants of the epitope as present in Bordetella parapertussis and Bordetella bronchiseptica. Finally, it was found that the immunodominant P.69 Prn epitope is broadly recognized in the human population by CD4+ T cells in an HLA-DQ-restricted manner. During B. pertussis infection, the epitope was associated with a Th1-type CD4+ T-cell response. Hence, this novel P.69 Prn epitope is involved in CD4+ T-cell immunity after B. pertussis vaccination and infection in mice and, more importantly, in humans. Thus, it may provide a useful tool for the evaluation of the type, magnitude, and maintenance of B. pertussis-specific CD4+ T-cell mechanisms in preclinical and clinical vaccine studies.


2018 ◽  
Vol 8 ◽  
Author(s):  
Alberto Grandi ◽  
Laura Fantappiè ◽  
Carmela Irene ◽  
Silvia Valensin ◽  
Michele Tomasi ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253918
Author(s):  
Jelena Repac ◽  
Marija Mandić ◽  
Tanja Lunić ◽  
Bojan Božić ◽  
Biljana Božić Nedeljković

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009248
Author(s):  
Matthias Niemann ◽  
Nils Lachmann ◽  
Kirsten Geneugelijk ◽  
Eric Spierings

The EuroTransplant Kidney Allocation System (ETKAS) aims at allocating organs to patients on the waiting list fairly whilst optimizing HLA match grades. ETKAS currently considers the number of HLA-A, -B, -DR mismatches. Evidently, epitope matching is biologically and clinically more relevant. We here executed ETKAS-based computer simulations to evaluate the impact of epitope matching on allocation and compared the strategies. A virtual population of 400,000 individuals was generated using the National Marrow Donor Program (NMDP) haplotype frequency dataset of 2011. Using this population, a waiting list of 10,400 patients was constructed and maintained during simulation, matching the 2015 Eurotransplant Annual Report characteristics. Unacceptable antigens were assigned randomly relative to their frequency using HLAMatchmaker. Over 22,600 kidneys were allocated in 10 years in triplicate using Markov Chain Monte Carlo simulations on 32-CPU-core cloud-computing instances. T-cell epitopes were calculated using the www.pirche.com portal. Waiting list effects were evaluated against ETKAS for five epitope matching scenarios. Baseline simulations of ETKAS slightly overestimated reported average HLA match grades. The best balanced scenario maintained prioritisation of HLA A-B-DR fully matched donors while replacing the HLA match grade by PIRCHE-II score and exchanging the HLA mismatch probability (MMP) by epitope MMP. This setup showed no considerable impact on kidney exchange rates and waiting time. PIRCHE-II scores improved, whereas the average HLA match grade diminishes slightly, yet leading to an improved estimated graft survival. We conclude that epitope-based matching in deceased donor kidney allocation is feasible while maintaining equal balances on the waiting list.


2008 ◽  
Vol 57 (8) ◽  
pp. 1185-1195 ◽  
Author(s):  
Junko Matsuzaki ◽  
Feng Qian ◽  
Immanuel Luescher ◽  
Shashikant Lele ◽  
Gerd Ritter ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 432 ◽  
Author(s):  
Jessica M. van Loben Sels ◽  
Kim Y. Green

Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.


1988 ◽  
Vol 168 (1) ◽  
pp. 213-227 ◽  
Author(s):  
D H Kono ◽  
J L Urban ◽  
S J Horvath ◽  
D G Ando ◽  
R A Saavedra ◽  
...  

Experimental allergic encephalomyelitis (EAE) is an autoimmune demyelinating disease of the central nervous system (CNS) that occurs after immunization of animals with myelin basic protein (MBP). The disease is a prototype model for the study of antigen-specific T helper cell-mediated autoimmune disease. In SJL/J mice, EAE is mediated by T helper cells directed against a 40-amino acid COOH-terminal peptic fragment of mouse small MBP. To identify the minimal T cell epitopes of MBP responsible for EAE, overlapping peptides completely encompassing the epitopes within this region were synthesized. A 28-residue peptide of mouse MBP spanning residues 87-114 (pM87-114) was able to elicit both a strong T cell response and chronic relapsing disease. To better localize the T cell epitopes, shorter peptides within this region were synthesized and two overlapping peptides, pM87-98 and pM91-104, were able to induce EAE. T cell clones and bulk lymph node cell populations reactive with pM87-98 did not respond to pM91-104. However, lymph node cells reactive with pM91-104 also reacted with pM87-98, thus showing that these two peptides represent contiguous, but distinct encephalitogenic epitopes and that both these epitopes may be contained within pM87-98. In addition, pM87-114 and pM87-98 were found to be minor determinants of the total T cell response to rat and rabbit MBP. The restricted response to MBP in SJL/J mice is similar to that of the PL/J mice in that each appears to have only a single peptide region in MBP that elicits encephalitogenic T cells. However, within the region studied, there were two if not more T cell epitopes. This differs from the single encephalitogenic PL/J epitope. These findings of a single encephalitogenic peptide region with multiple T cell epitopes and the fact that encephalitogenic T cell epitopes may be subdominant have implications for the design of treatments directed at the T cell receptor-MHC-peptide epitope complex in autoimmune disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Julio Alonso-Padilla ◽  
Esther M. Lafuente ◽  
Pedro A. Reche

Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt’s lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble.


Sign in / Sign up

Export Citation Format

Share Document