scholarly journals The Alternative Activation Pathway and Complement Component C3 Are Critical for a Protective Immune Response against Pseudomonas aeruginosa in a Murine Model of Pneumonia

2004 ◽  
Vol 72 (5) ◽  
pp. 2899-2906 ◽  
Author(s):  
Stacey L. Mueller-Ortiz ◽  
Scott M. Drouin ◽  
Rick A. Wetsel

ABSTRACT Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia, and approximately 80% of patients with cystic fibrosis are infected with this bacterium. To investigate the overall role of complement and the complement activation pathways in the host defense against P. aeruginosa pulmonary infection, we challenged C3-, C4-, and factor B-deficient mice with P. aeruginosa via intranasal inoculation. In these studies, C3−/− mice had a higher mortality rate than C3+/+ mice. Factor B−/− mice, but not C4−/− mice, infected with P. aeruginosa had a mortality rate similar to that of C3−/− mice, indicating that in this model the alternative pathway of complement activation is required for the host defense against Pseudomonas infection. C3−/− mice had 6- to 7-fold more bacteria in the lungs and 48-fold more bacteria in the blood than did C3+/+ mice at 24 h postinfection. In vitro, phagocytic cells from C3+/+ or C3−/− mice exhibited a decreased ability to bind and/or ingest P. aeruginosa in the presence of C3-deficient serum compared to phagocytic cells in the presence of serum with sufficient C3. C3−/− mice displayed a significant increase in neutrophils in the lungs and had higher levels of interleukin-1β (IL-1β), IL-6, IL-10, KC, and MIP-2 in the lungs at 24 h postinfection than did C3+/+ mice. Collectively, these results indicate that complement activation by the alternative pathway is critical for the survival of mice infected with P. aeruginosa and that the protection provided by complement is at least in part due to C3-mediated opsonization and phagocytosis of P. aeruginosa.

2020 ◽  
Vol 31 (4) ◽  
pp. 829-840 ◽  
Author(s):  
Sophie Chauvet ◽  
Romain Berthaud ◽  
Magali Devriese ◽  
Morgane Mignotet ◽  
Paula Vieira Martins ◽  
...  

BackgroundThe pathophysiology of the leading cause of pediatric acute nephritis, acute postinfectious GN, including mechanisms of the pathognomonic transient complement activation, remains uncertain. It shares clinicopathologic features with C3 glomerulopathy, a complement-mediated glomerulopathy that, unlike acute postinfectious GN, has a poor prognosis.MethodsThis retrospective study investigated mechanisms of complement activation in 34 children with acute postinfectious GN and low C3 level at onset. We screened a panel of anticomplement protein autoantibodies, carried out related functional characterization, and compared results with those of 60 children from the National French Registry who had C3 glomerulopathy and persistent hypocomplementemia.ResultsAll children with acute postinfectious GN had activation of the alternative pathway of the complement system. At onset, autoantibodies targeting factor B (a component of the alternative pathway C3 convertase) were found in a significantly higher proportion of children with the disorder versus children with hypocomplementemic C3 glomerulopathy (31 of 34 [91%] versus 4 of 28 [14%], respectively). In acute postinfectious GN, anti-factor B autoantibodies were transient and correlated with plasma C3 and soluble C5b-9 levels. We demonstrated that anti-factor B antibodies enhance alternative pathway convertase activity in vitro, confirming their pathogenic effect. We also identified crucial antibody binding sites on factor B, including one correlated to disease severity.ConclusionsThese findings elucidate the pathophysiologic mechanisms underlying acute postinfectious GN by identifying anti-factor B autoantibodies as contributing factors in alternative complement pathway activation. At onset of a nephritic syndrome with low C3 level, screening for anti-factor B antibodies might help guide indications for kidney biopsy to avoid misdiagnosed chronic glomerulopathy, such as C3 glomerulopathy, and to help determine therapy.


2008 ◽  
Vol 77 (3) ◽  
pp. 1061-1070 ◽  
Author(s):  
Kileen L. Mershon ◽  
Alex Vasuthasawat ◽  
Gregory W. Lawson ◽  
Sherie L. Morrison ◽  
David O. Beenhouwer

ABSTRACT Previous studies have shown that the alternative pathway of complement activation plays an important role in protection against infection with Cryptococcus neoformans. Cryptococcus gattii does not activate the alternative pathway as well as C. neoformans in vitro. The role of complement in C. gattii infection in vivo has not been reported. In this study, we used mice deficient in complement components to investigate the role of complement in protection against a C. gattii isolate from an ongoing outbreak in northwestern North America. While factor B-deficient mice showed an enhanced rate of death, complement component C3-deficient mice died even more rapidly, indicating that the alternative pathway was not the only complement pathway contributing to protection against disease. Both C3- and factor B-deficient mice had increased fungal burdens in comparison to wild-type mice. Histopathology revealed an overwhelming fungal burden in the lungs of these complement-deficient mice, which undoubtedly prevented efficient gas exchange, causing death. Following the fate of radiolabeled organisms showed that both factor B- and C3-deficient mice were less effective than wild-type mice in clearing organisms. However, opsonization of C. gattii with complement components was not sufficient to prolong life in mice deficient in complement. Killing of C. gattii by macrophages in vitro was decreased in the presence of serum from factor B- and C3-deficient versus wild-type mice. In conclusion, we have demonstrated that complement activation is crucial for survival in C. gattii infection. Additionally, we have shown that the alternative pathway of complement activation is not the only complement pathway contributing to protection.


2020 ◽  
Vol 18 (4) ◽  
pp. 133-137
Author(s):  
P.M. Kozhin ◽  
◽  
A.L. Rusanov ◽  
O.O. Shoshina ◽  
N.G. Luzgina ◽  
...  

Objective. To evaluate the ability of PMJ2-R cells for classical and alternative activation and to assess the effect of oxidized dextran on the functional status of polarized cells of this line. OD is a promising lysosomotropic agent used for targeted drug delivery to phagocytic cells. Materials and methods. We analyzed ability of immortalized murine peritoneal macrophages PMJ2R (ATCC CRL2458) to classical and alternative polarization, including that upon exposure to OD. We used real-time polymerase chain reaction to assess gene expression of competing arginine pathways. The capacity of phagocytes to engulf zymosan granules was evaluated using fluorescence microscopy. Results. We observed metabolic changes in PMJ2-R cells following their classical and alternative activation; these changes were typical of M1 and M2 macrophages, respectively. M1 macrophages demonstrated most active phagocytosis, while the activity of phagocytosis in M2 macrophages increased dose-dependently upon AD exposure. OD upregulates production of proinflammatory cytokine TNF-α in intact PMJ2-R cells and M1 macrophages. Conclusion. PMJ2-R cells have the capacity to phagocytose particles, can be polarized via the classical and alternative pathway, can modulate their functional activity in response to OD (a macrophagotropic substance), and exhibit the main phenotypic properties typical of peritoneal macrophages from C57Bl/6J mice. Therefore, cells of this line can be used as model cells in the investigation of phagocytic cell biology and pathology. Key words: alternative activation, classical activation, oxidized dextran, peritoneal macrophages, phagocytosis, C57Bl/6J, PMJ2-R


Parasitology ◽  
1983 ◽  
Vol 87 (1) ◽  
pp. 75-86 ◽  
Author(s):  
A. Ruppel ◽  
U. Rother ◽  
H. Vongerichten ◽  
H. J. Diesfeld

SUMMARYLiving Schistosoma mansoni of various developmental stages were studied with respect to their ability to activate the complement system in sera of humans, mice and rats. Immunofluorescence assays demonstrated that binding of human C3 occurred on fresh schistosomula as well as on schistosomula prepared from mouse lymph-nodes or lungs and on adult schistosomes. However, rodent C3 was deposited only on fresh schistosomula. Deposition of human C3 on the worms' surface required activation of the complement system. The alternative pathway was shown to be involved in deposition of human C3 on schistosomes of all ages, whereas activation of the classical pathway was demonstrable only with fresh schistosomula. Immunoelectrophoretic studies demonstrated a dose-dependent cleavage of human C3 and conversion of factor B by living adult schistosomes. The results demonstrate that the ability of living schistosomes to activate complement in vitro is dependent not only on their developmental stage but also on the species of the serum.


2020 ◽  
Vol 8 (2) ◽  
pp. 739-745 ◽  
Author(s):  
Weinan Jiang ◽  
Ximian Xiao ◽  
Yueming Wu ◽  
Weiwei Zhang ◽  
Zihao Cong ◽  
...  

Host defense peptide mimicking peptide polymer displayed potent in vitro and in vivo antimicrobial activity against clinically isolated multidrug resistant Pseudomonas aeruginosa.


2006 ◽  
Vol 177 (3) ◽  
pp. 1872-1878 ◽  
Author(s):  
Nalini S. Bora ◽  
Sankaranarayanan Kaliappan ◽  
Purushottam Jha ◽  
Qin Xu ◽  
Jeong-Hyeon Sohn ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2471-2471 ◽  
Author(s):  
Anna Borodovsky ◽  
Kristina Yucius ◽  
Andrew Sprague ◽  
James Butler ◽  
Shannon Fishman ◽  
...  

Abstract The complement system is a pivotal player in multiple hematological conditions. Antibody blockade of the C5 component of complement has been approved as a treatment for both paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic-uremic syndrome (aHUS), validating C5 as an important therapeutic target. Recently, we developed a robust RNAi therapeutics platform for the delivery of siRNAs to the liver using trivalent GalNAc conjugates, enabling silencing of hepatocyte-expressed genes following subcutaneous (SC) injection. The liver is a major source of C5 and other complement pathway components. The GalNAc conjugate technology allows rapid development of siRNAs targeting multiple members of the complement cascade and evaluation of their silencing in pre-clinical models. To examine the utility of the siRNA approach for targeting complement pathway components we designed and synthesized GalNAc conjugated siRNAs targeting rodent, primate and human C5. Potent siRNA duplexes, showing greater than 95% silencing of C5 mRNA were selected using in vitro screening in human cell lines and mouse primary hepatocytes. C5 silencing and serum hemolytic activity inhibition were evaluated in rodents using single and multi-dose SC treatment regimens. A C5-targeting siRNA conjugate demonstrated a single dose ED50 of 0.625 mg/kg in the mouse with greater than 90% silencing of serum C5 achievable at higher doses. Serum C5 silencing was durable, with recovery starting two weeks after a single SC injection We went on to examine the efficacy of C5 silencing in the rat and observed robust lowering of serum C5 with 2.5 and 5 mg/kg multi-dose regimens, resulting in up to ∼90% inhibition of complement classical pathway hemolytic activity. Evaluation of the translation of this approach to higher species is in progress. Since PNH erythrocyte lysis is thought to be mediated by the activation of the alternative pathway of complement we initiated work on the development of siRNA conjugates targeting Factor B, an essential component of the alternative pathway C3 convertase. siRNAs targeting rodent, primate and human Factor B were identified by in vitro screening and demonstrate >90% silencing of Factor B mRNA in human cell lines and primary mouse hepatocytes. Evaluation of Factor B silencing in rodent models is ongoing. siRNA-mediated silencing of liver-derived complement components is a promising novel therapeutic approach for inhibiting the activity of C5 and other complement pathway targets, with the potential to enable subcutaneous treatment for patients with PNH and related disorders. Disclosures: Borodovsky: Alnylam: Employment. Yucius:Alnylam: Employment. Sprague:Alnylam: Employment. Butler:Alnylam: Employment. Fishman:Alnylam: Employment. Nguyen:Alnylam: Employment. Vaishnaw:Alnylam: Employment. Maier:Alnylam: Employment. Kallanthottathil:Alnylam: Employment. Kuchimanchi:Alnylam: Employment. Manoharan:Alnylam: Employment. Meyers:Alnylam: Employment. Fitzgerald:Alnylam: Employment.


1991 ◽  
Vol 4 (3) ◽  
pp. 359-395 ◽  
Author(s):  
J E Figueroa ◽  
P Densen

The complement system consists of both plasma and membrane proteins. The former influence the inflammatory response, immune modulation, and host defense. The latter are complement receptors, which mediate the cellular effects of complement activation, and regulatory proteins, which protect host cells from complement-mediated injury. Complement activation occurs via either the classical or the alternative pathway, which converge at the level of C3 and share a sequence of terminal components. Four aspects of the complement cascade are critical to its function and regulation: (i) activation of the classical pathway, (ii) activation of the alternative pathway, (iii) C3 convertase formation and C3 deposition, and (iv) membrane attack complex assembly and insertion. In general, mechanisms evolved by pathogenic microbes to resist the effects of complement are targeted to these four steps. Because individual complement proteins subserve unique functional activities and are activated in a sequential manner, complement deficiency states are associated with predictable defects in complement-dependent functions. These deficiency states can be grouped by which of the above four mechanisms they disrupt. They are distinguished by unique epidemiologic, clinical, and microbiologic features and are most prevalent in patients with certain rheumatologic and infectious diseases. Ethnic background and the incidence of infection are important cofactors determining this prevalence. Although complement undoubtedly plays a role in host defense against many microbial pathogens, it appears most important in protection against encapsulated bacteria, especially Neisseria meningitidis but also Streptococcus pneumoniae, Haemophilus influenzae, and, to a lesser extent, Neisseria gonorrhoeae. The availability of effective polysaccharide vaccines and antibiotics provides an immunologic and chemotherapeutic rationale for preventing and treating infection in patients with these deficiencies.


2010 ◽  
Vol 78 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Maureen H. Diaz ◽  
Alan R. Hauser

ABSTRACT ExoU, a cytotoxin translocated into host cells via the type III secretion system of Pseudomonas aeruginosa, is associated with increased mortality and disease severity. We previously showed that impairment of recruited phagocytic cells allowed survival of ExoU-secreting P. aeruginosa in the lung. Here we analyzed types of cells injected with ExoU in vivo using translational fusions of ExoU with a β-lactamase reporter (ExoU-Bla). Cells injected with ExoU-Bla were detectable in vitro but not in vivo, presumably due to the rapid cytotoxicity induced by the toxin. Therefore, we used a noncytotoxic ExoU variant, designated ExoU(S142A)-Bla, to analyze injection in vivo. We determined that phagocytic cells in the lung were frequently injected with ExoU(S142A). Early during infection, resident macrophages constituted the majority of cells into which ExoU was injected, but neutrophils and monocytes became the predominant types of cells into which ExoU was injected upon recruitment into the lung. We observed a modest preference for injection into neutrophils over injection into other cell types, but in general the repertoire of injected immune cells reflected the relative abundance of these cells in the lung. Our results indicate that phagocytic cells in the lung are injected with ExoU and support the hypothesis that ExoU-mediated impairment of phagocytes has a role in the pathogenesis of pneumonia caused by P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document