scholarly journals Role of Interleukin-6 in Mortality from and Physiologic Response to Sepsis

2005 ◽  
Vol 73 (5) ◽  
pp. 2751-2757 ◽  
Author(s):  
Daniel G. Remick ◽  
Gerald Bolgos ◽  
Shannon Copeland ◽  
Javed Siddiqui

ABSTRACT Previous studies have suggested that interleukin-6 (IL-6) serves as both a marker and a mediator for the severity of sepsis. We tested whether interleukin 6 knockout (IL-6KO) mice were more susceptible to sepsis mortality induced by cecal ligation and puncture. IL-6KO and wild-type (WT) mice were subjected to increasing degrees of sepsis severity. Physiologic support was given with fluids and appropriate antibiotics. Plasma IL-6 levels were determined 6 h after the onset of sepsis, and a complete hematologic profile was performed on day 2. As expected, increasing sepsis severity resulted in greater and more rapid mortality. However, the mortality was nearly identical in the IL-6KO and WT mice. All WT septic mice had high plasma levels of IL-6 6 h after the onset of sepsis, while IL-6KO were near or below the lower limit of detection. Among the WT mice, mortality was significantly higher in mice with plasma IL-6 >3,000 pg/ml. Both IL-6KO and WT mice destined to die in the early stages of sepsis had substantial and nearly identical weight gain in the first 24 h. However, at later stages the WT mice had significantly greater weight loss than the KO mice. The KO mice failed to develop the characteristic hypothermia within the first 24 h of severe sepsis routinely observed in the WT mice. These data demonstrate that IL-6 serves as a marker of disease severity in sepsis and does modulate some physiologic responses, but complete lack of IL-6 does not does not alter mortality due to sepsis.

2000 ◽  
Vol 68 (4) ◽  
pp. 2024-2033 ◽  
Author(s):  
Seema Mattoo ◽  
Jeff F. Miller ◽  
Peggy A. Cotter

ABSTRACT Fimbriae are filamentous, cell surface structures which have been proposed to mediate attachment of Bordetella species to respiratory epithelium. Bordetella bronchiseptica has four known fimbrial genes: fim2, fim3,fimX, and fimA. While these genes are unlinked on the chromosome, their protein products are assembled and secreted by a single apparatus encoded by the fimBCD locus. ThefimBCD locus is embedded within the fha operon, whose genes encode another putative adhesin, filamentous hemagglutinin (FHA). We have constructed a Fim− B. bronchiseptica strain, RB63, by introducing an in-frame deletion extending from fimB through fimD. Western blot analysis showed that RB63 is unable to synthesize fimbriae but is unaffected for FHA expression. Using this mutant, we assessed the role of fimbriae in pathogenesis in vitro and in vivo in natural animal hosts. Although RB63 was not significantly defective in its ability to adhere to various tissue culture cell lines, including human laryngeal HEp-2 cells, it was considerably altered in its ability to cause respiratory tract infections in rats. The number of ΔfimBCD bacteria recovered from the rat trachea at 10 days postinoculation was significantly decreased compared to that of wild-type B. bronchiseptica and was below the limit of detection at 30 and 60 days postinoculation. The number of bacteria recovered from the nasal cavity and larynx was not significantly different between RB63 and the wild-type strain at any time point. The ability of fimbriae to mediate initial attachment to tracheal tissue was tested in an intratracheal inoculation assay. Significantly fewer RB63 than wild-type bacteria were recovered from the tracheas at 24 h after intratracheal inoculation. These results demonstrate that fimbriae are involved in enhancing the ability of B. bronchiseptica to establish tracheal colonization and are essential for persistent colonization at this site. Interestingly, anti-Bordetella serum immunoglobulin M (IgM) levels were significantly lower in animals infected with RB63 than in animals infected with wild-type B. bronchiseptica at 10 days postinoculation. Even at 30 days postinoculation, RB63-infected animals had lower serum anti-Bordetella antibody titers in general. This disparity in antibody profiles suggests that fimbriae are also important for the induction of a humoral immune response.


2001 ◽  
Vol 281 (3) ◽  
pp. R1013-R1023 ◽  
Author(s):  
Quan Wang ◽  
Cheng Hui Fang ◽  
Per-Olof Hasselgren

Sepsis is associated with increased intestinal permeability, but mediators and mechanisms are not fully understood. We examined the role of interleukin (IL)-6 and IL-10 in sepsis-induced increase in intestinal permeability. Intestinal permeability was measured in IL-6 knockout (IL-6 −/−) and wild-type (IL-6 +/+) mice 16 h after induction of sepsis by cecal ligation and puncture or sham operation. In other experiments, mice or intestinal segments incubated in Ussing chambers were treated with IL-6 or IL-10. Intestinal permeability was assessed by determining the transmucosal transport of the 4.4-kDa marker fluorescein isothiocyanate conjugated dextran and the 40-kDa horseradish peroxidase. Intestinal permeability for both markers was increased in septic IL-6 +/+ mice but not in septic IL-6 −/− mice. Treatment of nonseptic mice or of intestinal segments in Ussing chambers with IL-6 did not influence intestinal permeability. Plasma IL-10 levels were increased in septic IL-6 −/− mice, and treatment of septic mice with IL-10 resulted in reduced intestinal permeability. Increased intestinal permeability during sepsis may be regulated by an interaction between IL-6 and IL-10. Treatment with IL-10 may prevent the increase in mucosal permeability during sepsis.


2008 ◽  
Vol 76 (9) ◽  
pp. 4088-4091 ◽  
Author(s):  
Henry W. Murray

ABSTRACT In patients with visceral leishmaniasis, increased levels of circulating interleukin-6 (IL-6) regularly accompany fully expressed, progressive infections (kala-azar). To experimentally test the role of IL-6, responses to an intracellular Leishmania donovani infection in the livers of IL-6−/− and wild-type mice were compared. IL-6−/− mice showed an enhanced control of the infection and earlier, rapid parasite killing along with additional evidence of a stimulated antileishmanial Th1-cell-type response: increased levels of circulating gamma interferon, accelerated granuloma assembly, and heightened responsiveness to chemotherapy. In this model of visceral leishmaniasis, IL-6 appears to act in a suppressive, macrophage-deactivating fashion, which identifies it as a potential target for therapeutic blockade.


2005 ◽  
Vol 289 (2) ◽  
pp. L244-L251 ◽  
Author(s):  
Erica L. Martin ◽  
Lynda A. McCaig ◽  
Brent Z. Moyer ◽  
M. Cynthia Pape ◽  
Kevin J. Leco ◽  
...  

An imbalance in matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) leads to excessive or insufficient tissue breakdown, which is associated with many disease processes. The TIMP-3 null mouse is a model of MMP/TIMP imbalance, which develops air space enlargement and decreased lung function. These mice responded differently to cecal ligation and perforation (CLP)-induced septic lung injury than wild-type controls. The current study addresses whether the TIMP-3 knockout lung is susceptible to different types of insults or only those involving sepsis, by examining its response to lipopolysaccharide (LPS)-induced sepsis, mechanical ventilation (MV), and hyperoxia. TIMP-3 null noninjured controls of each insult consistently demonstrated significantly higher compliance vs. wild-type mice. Null mice treated with LPS had a further significantly increased compliance compared with untreated controls. Conversely, MV and hyperoxia did not alter compliance in the null lung. MMP abundance and activity increased in response to LPS but were generally unaltered following MV or hyperoxia, correlating with compliance alterations. All three insults produced inflammatory cytokines; however, the response of the null vs. wild-type lung was dependent on the type of insult. Overall, this study demonstrated that 1) LPS-induced sepsis produced a similar response in null mice to CLP-induced sepsis, 2) the null lung responded differently to various insults, and 3) the null susceptibility to compliance changes correlated with increased MMPs. In conclusion, this study provides insight into the role of TIMP-3 in response to various lung insults, specifically its importance in regulating MMPs to maintain compliance during a sepsis.


2019 ◽  
Vol 112 (4) ◽  
pp. 343-355 ◽  
Author(s):  
Yingying Lin ◽  
Keman Liao ◽  
Yifeng Miao ◽  
Zhongrun Qian ◽  
Zhaoyuan Fang ◽  
...  

Abstract Background Isocitrate dehydrogenase wild-type (WT) glioblastoma (GBM) accounts for 90% of all GBMs, yet only 27% of isocitrate dehydrogenase WT-GBMs have p53 mutations. However, the tumor surveillance function of WT-p53 in GBM is subverted by mechanisms that are not fully understood. Methods We investigated the proteolytic inactivation of WT-p53 by asparaginyl endopeptidase (AEP) and its effects on GBM progression in cancer cells, murine models, and patients’ specimens using biochemical and functional assays. The sera of healthy donors (n = 48) and GBM patients (n = 20) were examined by enzyme-linked immunosorbent assay. Furthermore, effects of AEP inhibitors on GBM progression were evaluated in murine models (n = 6–8 per group). The statistical significance between groups was determined using two-tailed Student t tests. Results We demonstrate that AEP binds to and directly cleaves WT-p53, resulting in the inhibition of WT-p53-mediated tumor suppressor function in both tumor cells and stromal cells via extracellular vesicle communication. High expression of uncleavable p53-N311A-mutant rescue AEP-induced tumorigenesis, proliferation, and anti-apoptotic abilities. Knock down or pharmacological inhibition of AEP reduced tumorigenesis and prolonged survival in murine models. However, overexpression of AEP promoted tumorigenesis and shortened the survival time. Moreover, high AEP levels in GBM tissues were associated with a poor prognosis of GBM patients (n = 83; hazard ratio = 3.94, 95% confidence interval = 1.87 to 8.28; P < .001). A correlation was found between high plasma AEP levels and a larger tumor size in GBM patients (r = 0.6, P = .03), which decreased dramatically after surgery. Conclusions Our results indicate that AEP promotes GBM progression via inactivation of WT-p53 and may serve as a prognostic and therapeutic target for GBM.


2006 ◽  
Vol 290 (3) ◽  
pp. R685-R693 ◽  
Author(s):  
Victor T. Enoh ◽  
Chad D. Fairchild ◽  
Cheng Y. Lin ◽  
Tushar K. Varma ◽  
Edward R. Sherwood

CD8 knockout mice depleted of natural killer (NK) cells by treatment with anti-asialoGM1 (CD8KO/αAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential sources of injury include bacterial dissemination, cecal ischemia, and translocation of bacterial toxins. We treated wild-type and CD8KO/αAsGM1 mice with imipenem after CLP to decrease bacterial dissemination. Additional mice were subjected to cecal ligation without puncture of the cecal wall or cecal ligation and removal of cecal contents. Imipenem treatment decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and exhibited significant hypothermia, metabolic acidosis, and high plasma cytokine concentrations. Wild-type mice subjected to cecal ligation without puncture also died, despite very low bacterial counts in blood, but wild-type mice subjected to cecal ligation and washout of cecal contents survived. In CD8KO/αAsGM1 mice subjected to CLP, imipenem treatment increased survival from 50% to 100%. After cecal ligation without puncture, long-term survival was 80–90% in CD8KO/αAsGM1 mice. Hypothermia, metabolic acidosis, and cytokine production were attenuated in CD8KO/αAsGM1 mice compared with wild-type controls. These results indicate that bacterial dissemination is not a major source of injury in wild-type mice after CLP, but the presence of gut flora in the cecal lumen is required for induction of systemic inflammation after cecal injury. CD8KO/αAsGM1 mice are resistant to the systemic manifestations of cecal injury.


2019 ◽  
Vol 20 (6) ◽  
pp. 1354 ◽  
Author(s):  
Thunnicha Ondee ◽  
Thiranut Jaroonwitchawan ◽  
Trairak Pisitkun ◽  
Joseph Gillen ◽  
Aleksandra Nita-Lazar ◽  
...  

Dysfunction of FcGRIIb, the only inhibitory receptor of the FcGR family, is commonly found in the Asian population and is possibly responsible for the extreme endotoxin exhaustion in lupus. Here, the mechanisms of prominent endotoxin (LPS) tolerance in FcGRIIb−/− mice were explored on bone marrow-derived macrophages using phosphoproteomic analysis. As such, LPS tolerance decreased several phosphoproteins in the FcGRIIb−/− macrophage, including protein kinase C-β type II (PRKCB), which was associated with phagocytosis function. Overexpression of PRKCB attenuated LPS tolerance in RAW264.7 cells, supporting the role of this gene in LPS tolerance. In parallel, LPS tolerance in macrophages and in mice was attenuated by phorbol 12-myristate 13-acetate (PMA) administration. This treatment induced several protein kinase C families, including PRKCB. However, PMA attenuated the severity of mice with cecal ligation and puncture on LPS tolerance preconditioning in FcGRIIb−/− but not in wild-type cells. The significant reduction of PRKCB in the FcGRIIb−/− macrophage over wild-type cell possibly induced the more severe LPS-exhaustion and increased the infection susceptibility in FcGRIIb−/− mice. PMA induced PRKCB, improved LPS-tolerance, and attenuated sepsis severity, predominantly in FcGRIIb−/− mice. PRKCB enhancement might be a promising strategy to improve macrophage functions in lupus patients with LPS-tolerance from chronic infection.


2018 ◽  
Vol 10 (3) ◽  
pp. 189-201 ◽  
Author(s):  
Jiraphorn Issara-Amphorn ◽  
Saowapha Surawut ◽  
Navaporn Worasilchai ◽  
Arthid Thim-uam ◽  
Malcolm Finkelman ◽  
...  

We investigated the influence of spontaneous gut leakage upon polymicrobial sepsis in a lupus model with Fc gamma receptor IIb-deficient (FcGRIIb-/-) mice aged 8 and 40 weeks, as representing asymptomatic and symptomatic lupus, respectively. Spontaneous gut leakage, determined by (i) the presence of FITC-dextran, (ii) elevated serum endotoxin, and (iii) elevated serum (1→3)-β-D-glucan (BG), was demonstrated in symptomatic lupus but not in the asymptomatic group. In parallel, spontaneous gut leakage, detected by elevated serum BG without fungal infection, was demonstrated in patients with active lupus nephritis. Gut leakage induced by dextran sulfate solution (DSS) or endotoxin administration together with BG or endotoxin alone, but not BG alone, enhanced the severity of cecal ligation and puncture (CLP) sepsis more prominently in 8-week-old FcGRIIb-/- mice. Additionally, the bone marrow-derived macrophages of FcGRIIb-/- mice produced higher cytokine levels when coexposed to endotoxin and BG, when compared to wild-type mice. In summary, spontaneous gut leakage was demonstrated in symptomatic FcGRIIb-/- mice and the induction of gut permeability worsened sepsis severity. Gut translocation of endotoxin and BG had a minor effect on wild-type mice, but the synergistic effect of BG and endotoxin was prominent in FcGRIIb-/- mice. The data suggest that therapeutic strategies addressing gut leakage may be of interest in sepsis conditions in patients with lupus.


1998 ◽  
Vol 275 (1) ◽  
pp. R269-R277 ◽  
Author(s):  
Lisa R. Leon ◽  
Andrew A. White ◽  
Matthew J. Kluger

Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have been implicated as key mediators in inflammation, morbidity, and mortality associated with sepsis. We examined the role of IL-6 and TNF-α signaling on hypothermia, fever, cachexia, anorexia, and survival during sepsis induced by cecal ligation and puncture (CLP) in male and female gene knockout mice. Male wild-type mice developed an initial hypothermia and subsequent fever during sepsis. Male IL-6 knockout mice did not develop fever; rather, they maintained a profound hypothermia during sepsis. Male TNF p55/p75 receptor (TNFR) knockout mice had attenuated hypothermia, but developed a virtually identical fever as wild-type mice. Cachexia did not differ between male wild-type and IL-6 or TNFR knockout mice, whereas anorexia was prolonged in IL-6 knockout mice. Due to the rapid lethality of sepsis in female mice, survival was the only variable we were able to statistically compare among female genotypes. Female wild-type mice had significantly decreased survival compared with male wild-type mice. Survival was significantly enhanced in male and female TNFR knockout mice compared with their wild-type controls. Lack of IL-6 did not affect male or female lethality. These data support the hypothesis that IL-6 is a key mediator of fever and food intake, whereas TNF is responsible for the initial hypothermia and lethality of sepsis in both sexes of mice. The enhanced lethality of CLP-treated female mice supports a role for sex steroids during sepsis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 167-167
Author(s):  
Thomas M. Renaud ◽  
Stefano Rivella

Abstract Abstract 167 Anemia of inflammation is the second most common form of anemia in the general population, and its impact on patient well-being is largely underestimated. Anemia cause by inflammation is multi-factorial and includes hepcidin-induced iron restricted erythropoiesis as well as direct cytokine effects on the bone marrow, erythropoietin production and efficacy, and on the lifespan of red cells. Many murine models of anemia of inflammation are unreliable or cumbersome, but a new model introduced by Sasu et al (Blood, 2010) using a single intraperitoneal injection of heat-killed brucella abortus antigen (HKBA) has proven reproducible and robust. We have used this model to explore the role of interleukin-6 and bone marrow derived cell production of hepcidin in anemia of inflammation (AI). First, we sought to explore the effect this model of AI in wild type mice, iterleukin-6 knockout mice (IL6-KO) and hepcidin knockout mice (Hamp-KO) (n≥15 for each group). We followed these mice for 7 weeks with weekly CBC's to observe the severity and time to recovery from anemia. Wild type mice were most affected 2 weeks after injection and slowly recovered over 7 weeks (HgB at 2 week = 6.4g/dl ± 1.2). IL6-KO mice were equally affected initially, with similar hemoglobin values at 2 weeks (6.9g/dl ± 1.3) and recovered by 6 weeks. Hamp-KO mice were less affected throughout the course of anemia, with hemoglobin values of 10.8g/dl ± 0.7 at 2 weeks with resolution by week 4. IL6-KO mice began to recover more quickly than wild type mice by week three, with hemoglobin values of 10.9g/dl ± 1.5 at that time, compared to wild type mice at 3 weeks with hemoglobin values of 7.4g/dl ± 0.7 (p= 0.0001). We believe that this demonstrates that interleukin-6 and hepcidin do coordinate to contribute to anemia of inflammation, but that there may be independent effects or additional factors. To address these questions, we are currently evaluating iron-related gene expression in these groups of mice as well as evaluating iron stores at multiple time points. We also evaluated serum cytokine levels in each of these groups of mice. We found similar elevations TNF-alpha and interferon gamma in all three groups at 6 and 24 hours. We found similar elevations of IL-6 in wild type and Hamp-KO mice at 6 and 24 hours. Bone marrows and spleens form each group of mice were evaluated at 2 weeks by flow cytometry using ter119 and CD44 to evaluate specific effects on erythroid maturation. This evaluation demonstrated a a profound inhibitory effect on erythropoiesis and, in particular, on the production of erythroid progenitor cells, showing a similar profile by flow cytometry between the three groups. In vitro studies have suggested that macrophage production of hepcidin is important in the development of AI (Theurl et al 2008). We evaluated the importance of bone marrow derived cell production of hepcidin on the development of AI using bone marrow chimeras. Using 600cGy × 2 as a preparative regimen, we transplanted wild type mice with bone marrow from Hamp-KO mice. We also irradiated Hamp-KO mice and transplanted them with wild type marrow. We injected these two groups of mice as well as wild type and Hamp-KO controls, we followed them for a period of 4 weeks with weekly CBC's to evaluate the degree of anemia. Hemoglobin values of wild type mice transplanted with Hamp-KO marrow were statistically indistinguishable from those of non-transplanted wild type mice during the follow-up period (HgB values at 1 week = 6.8g ± 0.7 vs 7.29g ± 1.1; at 2 weeks = 7.3 ± 0.6 vs 6.4 ± 1.2; at 3 weeks = 8.5 ± 1.8 vs 7.4 ± 0.5; at 4 weeks = 9.1 v 1.9 vs 8.6 ± 0.5; p<0.02 for all time points). Hamp-KO mice with wild-type bone marrow were statistically indistinguishable from non-transplanted Hamp-KO mice (Hgb values at 1 week = 9.9 ± 2.4 vs 10.8 ± 0.7; at 2 weeks = 10.6 ± 1.5 vs 10.3 ± 1.0; at 3 weeks = 12.8 ± 1.2 10.8 ± 0.7; at 4 weeks 12.6 ± 1.2 vs. 13.6 ± 1.0; p<0.02 for all time points). This suggests that the production of hepcidin by bone marrow derived cells dose not play a physiologically important role in the development of anemia of inflammation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document