scholarly journals YtfB, an OapA Domain-Containing Protein, Is a New Cell Division Protein in Escherichia coli

2018 ◽  
Vol 200 (13) ◽  
Author(s):  
Matthew A. Jorgenson ◽  
Kevin D. Young

ABSTRACT While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli , an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases. IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.

mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Paola Bisicchia ◽  
Senthil Arumugam ◽  
Petra Schwille ◽  
David Sherratt

ABSTRACTBacterial cell division initiates with the formation of a ring-like structure at the cell center composed of the tubulin homolog FtsZ (the Z-ring), which acts as a scaffold for the assembly of the cell division complex, the divisome. Previous studies have suggested that the divisome is initially composed of FtsZ polymers stabilized by membrane anchors FtsA and ZipA, which then recruit the remaining division proteins. The MinCDE proteins prevent the formation of the Z-ring at poles by oscillating from pole to pole, thereby ensuring that the concentration of the Z-ring inhibitor, MinC, is lowest at the cell center. We show that prior to septum formation, the early-division proteins ZipA, ZapA, and ZapB, along with FtsZ, assemble into complexes that counter-oscillate with respect to MinC, and with the same period. We propose that FtsZ molecules distal from high concentrations of MinC form relatively slowly diffusing filaments that are bound by ZapAB and targeted to the inner membrane by ZipA or FtsA. These complexes may facilitate the early stages of divisome assembly at midcell. As MinC oscillates toward these complexes, FtsZ oligomerization and bundling are inhibited, leading to shorter or monomeric FtsZ complexes, which become less visible by epifluorescence microscopy because of their rapid diffusion. Reconstitution of FtsZ-Min waves on lipid bilayers shows that FtsZ bundles partition away from high concentrations of MinC and that ZapA appears to protect FtsZ from MinC by inhibiting FtsZ turnover.IMPORTANCEA big issue in biology for the past 100 years has been that of how a cell finds its middle. InEscherichia coli, over 20 proteins assemble at the cell center at the time of division. We show that the MinCDE proteins, which prevent the formation of septa at the cell pole by inhibiting FtsZ, drive the counter-oscillation of early-cell-division proteins ZapA, ZapB, and ZipA, along with FtsZ. We propose that FtsZ forms filaments at the pole where the MinC concentration is the lowest and acts as a scaffold for binding of ZapA, ZapB, and ZipA: such complexes are disassembled by MinC and reform within the MinC oscillation period before accumulating at the cell center at the time of division. The ability of FtsZ to be targeted to the cell center in the form of oligomers bound by ZipA and ZapAB may facilitate the early stages of divisome assembly.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Krithika Rajagopalan ◽  
Elizabeth Nagle ◽  
Jonathan Dworkin

Regulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria, including the model Gram-negative bacteriumEscherichia coli, demonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thr phosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Douglas Pechacek ◽  
Myung Hwangbo ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli 4s is a Gram-negative bacterium found in the equine intestinal ecosystem alongside diverse other coliform bacteria and bacteriophages. This announcement describes the complete genome of the T7-like E. coli 4s podophage Penshu1. From its 39,263-bp genome, 54 protein-encoding genes and a 179-bp terminal repeat were predicted.


2019 ◽  
Vol 8 (40) ◽  
Author(s):  
James E. Corban ◽  
Jacob Gramer ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli is a Gram-negative bacterium often found in animal intestinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s siphophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which 33 functions were predicted. The capsid morphogenesis gene in Snoke contains a large intein.


EcoSal Plus ◽  
2021 ◽  
Author(s):  
Petra Anne Levin ◽  
Anuradha Janakiraman

Decades of research, much of it in Escherichia coli , have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings.


2015 ◽  
Vol 197 (8) ◽  
pp. 1507-1514 ◽  
Author(s):  
Ziad W. El-Hajj ◽  
Elaine B. Newman

ABSTRACTAlthoughEscherichia coliis a very small (1- to 2-μm) rod-shaped cell, here we describe anE. colimutant that forms enormously long cells in rich media such as Luria broth, as long indeed as 750 μm. Theseextremelyelongated (eel) cells are as long as the longest bacteria known and have no internal subdivisions. They are metabolically competent, elongate rapidly, synthesize DNA, and distribute cell contents along this length. They lack only the ability to divide. The concentration of the essential cell division protein FtsZ is reduced in these eel cells, and increasing this concentration restores division.IMPORTANCEEscherichia coliis usually a very small bacterium, 1 to 2 μm long. We have isolated a mutant that forms enormously long cells, 700 times longer than the usualE. colicell.E. colifilaments that form under other conditions usually die within a few hours, whereas our mutant is fully viable even when it reaches such lengths. This mutant provides a useful tool for the study of aspects ofE. coliphysiology that are difficult to investigate with small cells.


mBio ◽  
2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Nela Holečková ◽  
Linda Doubravová ◽  
Orietta Massidda ◽  
Virginie Molle ◽  
Karolína Buriánková ◽  
...  

ABSTRACTHow bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement inStreptococcus pneumoniae. We show thatlocZis not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division.IMPORTANCEBacterial cell division is a highly ordered process regulated in time and space. Recently, we reported that the Ser/Thr protein kinase StkP regulates cell division in Streptococcus pneumoniae, through phosphorylation of several key proteins. Here, we characterized one of the StkP substrates, Spr0334, which we named LocZ. We show that LocZ is a new cell division protein important for proper septum placement and likely functions as a marker of the cell division site. Consistently, LocZ supports proper Z-ring positioning at midcell. LocZ is conserved only among streptococci, lactococci, and enterococci, which lack homologues of the Min and nucleoid occlusion effectors, indicating that these bacteria adapted a unique mechanism to find their middle, reflecting their specific shape and symmetry.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Daniel E. Vega ◽  
William Margolin

ABSTRACTZipA is essential for cell division inEscherichia coli, acting early in the process to anchor polymers of FtsZ to the cytoplasmic membrane. Along with FtsA, FtsZ and ZipA form a proto-ring at midcell that recruits additional proteins to eventually build the division septum. Cells carrying the thermosensitivezipA1allele divide fairly normally at 30°C in rich medium but cease dividing at temperatures above 34°C, forming long filaments. In a search for suppressors of thezipA1allele, we found that deletions of specific genes involved in amino acid biosynthesis could partially rescue cell growth and division at 34°C or 37°C but not at 42°C. Notably, although a diverse group of amino acid biosynthesis gene deletions could partially rescue the growth ofzipA1cells at 34°C, only deletions of genes related to the biosynthesis of threonine, glycine, serine, and methionine could rescue growth at 37°C. Adding exogenous pyridoxal 5-phosphate (PLP), a cofactor for many of the enzymes affected by this study, partially suppressedzipA1mutant thermosensitivity. For many of the deletions, PLP had an additive rescuing effect on thezipA1mutant. Moreover, added PLP partially suppressed the thermosensitivity offtsQandftsKmutants and weakly suppressed anftsImutant, but it failed to suppressftsAorftsZthermosensitive mutants. Along with the ability of a deletion ofmetCto partially suppress theftsKmutant, our results suggest that perturbations of amino acid metabolic pathways, particularly those that redirect the flow of carbon away from the synthesis of threonine, glycine, or methionine, are able to partially rescue some cell division defects.IMPORTANCECell division of bacteria, such asEscherichia coli, is essential for their successful colonization. It is becoming increasingly clear that nutritional status and central metabolism can affect bacterial size and shape; for example, a metabolic enzyme (OpgH) can moonlight as a regulator of FtsZ, an essential cell division protein. Here, we demonstrate a link between amino acid metabolism and ZipA, another essential cell division protein that binds directly to FtsZ and tethers it to the cytoplasmic membrane. Our evidence suggests that altering flux through the methionine-threonine-glycine-serine pathways and supplementing with the enzyme cofactor pyridoxal-5-phosphate can partially compensate for an otherwise lethal defect in ZipA, as well as several other cell division proteins.


mBio ◽  
2021 ◽  
Author(s):  
Nicholas P. Greene ◽  
Vassilis Koronakis

In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Isla Hernandez ◽  
Micah Castillo ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli is a Gram-negative bacterium that is found in humans and animals as both a commensal organism and a pathogen. This report describes the isolation of Sciku, a siphophage infecting E. coli 4s, with 73 protein-coding genes. Genome comparisons suggest that Sciku is related to phages within Guernseyvirinae.


Sign in / Sign up

Export Citation Format

Share Document