scholarly journals Riboswitch-Associated Guanidinium-Selective Efflux Pumps Frequently Transmitted on Proteobacterial Plasmids Increase Escherichia coli Biofilm Tolerance to Disinfectants

2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Carmine J. Slipski ◽  
Taylor R. Jamieson ◽  
George G. Zhanel ◽  
Denice C. Bay

ABSTRACT Members of the small multidrug resistance (SMR) efflux pump family known as SugE (recently renamed Gdx) are known for their narrow substrate selectivity to small guanidinium (Gdm+) compounds and disinfectant quaternary ammonium compounds (QACs). Gdx members have been identified on multidrug resistance plasmids in Gram-negative bacilli, but their functional role remains unclear, as few have been characterized. Here, we conducted a survey of sequenced proteobacterial plasmids that encoded one or more SugE/Gdx sequences in an effort to (i) identify the most frequently represented Gdx member(s) on these plasmids and their sequence diversity, (ii) verify if Gdx sequences possess a Gdm+ riboswitch that regulates their translation similarly to chromosomally encoded Gdx members, and (iii) determine the antimicrobial susceptibility profile of the most predominate Gdx member to various QACs and antibiotics in Escherichia coli strains BW25113 and KAM32. The results of this study determined 14 unique SugE sequences, but only one Gdx sequence, annotated as “SugE(p),” predominated among the >140 plasmids we surveyed. Enterobacterales plasmids carrying sugE(p) possessed a guanidine II riboswitch similar to the upstream region of E. coli gdx. Cloning and expression of sugE(p), gdx, and emrE sequences into a low-copy-number expression vector (pMS119EH) revealed significant increases in QAC resistance to a limited range of detergent-like QACs only when gdx and sugE(p) transformants were grown as biofilms. These findings suggest that sugE(p) presence on proteobacterial plasmids may be driven by species that frequently encounter Gdm+ and QAC exposure. IMPORTANCE This study characterized the function of antimicrobial-resistant phenotypes attributed to plasmid-encoded guanidinium-selective small multidrug resistance (Gdm/SugE) efflux pumps. These sequences are frequently monitored as biocide resistance markers in antimicrobial resistance surveillance studies. Our findings reveal that enterobacterial gdm sequences transmitted on plasmids possess a guanidine II riboswitch, which restricts transcript translation in the presence of guanidinium. Cloning and overexpression of this gdm sequence revealed that it confers higher resistance to quaternary ammonium compound (QAC) disinfectants (which possess guanidium moieties) when grown as biofilms. Since biofilms are commonly eradicated with QAC-containing compounds, the presence of this gene on plasmids and its biofilm-specific resistance are a growing concern for clinical and food safety prevention measures.

2020 ◽  
Vol 202 (22) ◽  
Author(s):  
Tanisha Teelucksingh ◽  
Laura K. Thompson ◽  
Georgina Cox

ABSTRACT Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.


2002 ◽  
Vol 184 (9) ◽  
pp. 2543-2545 ◽  
Author(s):  
Yong Joon Chung ◽  
Milton H. Saier

ABSTRACT SugE of Escherichia coli, first identified as a suppressor of groEL mutations but a member of the small multidrug resistance family, has not previously been shown to confer a drug resistance phenotype. We show that high-level expression of sugE leads to resistance to a subset of toxic quaternary ammonium compounds.


2013 ◽  
Vol 58 (2) ◽  
pp. 722-733 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
Hong-Suk Kim ◽  
Son T. Nguyen ◽  
Chad Houseweart ◽  
...  

ABSTRACTMembers of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC ofEscherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of theEnterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versusE. coliAB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) ofE. coliAB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active againstEnterobacteriaceaespecies andPseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Chloe J Mitchell ◽  
Tracy A. Stone ◽  
Charles M. Deber

ABSTRACT Bacteria have acquired multiple mechanisms to evade the lethal effects of current therapeutics, hindering treatment of bacterial infections, such as those caused by the pathogen Pseudomonas aeruginosa, which is responsible for nosocomial and cystic fibrosis lung infections. One resistance mechanism involves membrane-embedded multidrug efflux pumps that can effectively extrude an array of substrates, including common antibiotics, dyes, and biocides. Among these is a small multidrug resistance (SMR) efflux protein, consisting of four transmembrane (TM) helices, that functions as an antiparallel dimer. TM helices 1 to 3 (TM1 to TM3) comprise the substrate binding pocket, while TM4 contains a GG7 heptad sequence motif that mediates the SMR TM4-TM4 dimerization. In the present work, we synthesized a series of peptides containing the residues centered on the TM4-TM4 binding interface found in the P. aeruginosa SMR (PAsmr), typified by Ac-Ala-(Sar)3-LLGIGLIIAGVLV-KKK-NH2 (helix-helix interaction residues are underlined). Here, the acetylated N-terminal sarcosine (N-methyl-Gly) tag [Ac-Ala-(Sar)3] promotes membrane penetration, while the C-terminal Lys tag promotes selectivity for the negatively charged bacterial membranes. This peptide was observed to competitively disrupt PAsmr-mediated efflux, as measured by efflux inhibition of the fluorescent dye ethidium bromide, while having no effect on cell membrane integrity. Alternatively, a corresponding peptide in which the TM4 binding motif is scrambled was inactive in this assay. In addition, when Escherichia coli cells expressing PAsmr were combined with sublethal concentrations of several biocides, growth was significantly inhibited when peptide was added, notably, by up to 95% with the disinfectant benzylalkonium chloride. These results demonstrate promise for an efflux pump inhibitor to address the increasing threat of antibiotic-resistant bacteria.


Author(s):  
Carmine J. Slipski ◽  
Taylor R. Jamieson-Datzkiw ◽  
George G. Zhanel ◽  
Denice C. Bay

Qac efflux pumps from proteobacterial multidrug-resistant plasmids are integron-encoded and confer resistance to quaternary ammonium compound (QAC) antiseptics, however, many are uncharacterized and misannotated. A survey of >2000 plasmid-encoded qac identified 37 unique qac sequences that correspond to one of five representative motifs: QacE, QacEΔ1, QacF/L, QacH/I, and QacG. Antimicrobial susceptibility testing of each cloned qac member in Escherichia coli , highlighted distinctive antiseptic susceptibility patterns that were most prominent when cells grew as biofilms.


2012 ◽  
Vol 56 (5) ◽  
pp. 2643-2651 ◽  
Author(s):  
Meenakshi Balganesh ◽  
Neela Dinesh ◽  
Sreevalli Sharma ◽  
Sanjana Kuruppath ◽  
Anju V. Nair ◽  
...  

ABSTRACTActive efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms inMycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil andl-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded byRv1218c, and the SMR (small multidrug resistance) class, encoded byRv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded byRv0849andRv1258calso mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WTM. tuberculosiscells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps ofM. tuberculosisplay a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization ofRv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Xiaoran Ge ◽  
Yuying Cai ◽  
Zhenghong Chen ◽  
Sizhe Gao ◽  
Xiwen Geng ◽  
...  

ABSTRACTThe drug resistance ofHelicobacter pyloriis gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The ability ofH. pylorito form biofilms on the gastric mucosa is known. However, there are few studies on the regulatory mechanisms ofH. pyloribiofilm formation and multidrug resistance. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp] are global regulatory factors and are synthesized inH. pyloriby the bifunctional enzyme SpoT. It has been reported that (p)ppGpp is involved in the biofilm formation and multidrug resistance of various bacteria. In this study, we found that SpoT also plays an important role inH. pyloribiofilm formation and multidrug resistance. Therefore, it was necessary to carry out some further studies regarding its regulatory mechanism. Considering that efflux pumps are of great importance in the biofilm formation and multidrug resistance of bacteria, we tried to determine whether efflux pumps controlled by SpoT participate in these activities. We found that Hp1174 (glucose/galactose transporter [gluP]), an efflux pump of the major facilitator superfamily (MFS), is highly expressed in biofilm-forming and multidrug-resistant (MDR)H. pyloristrains and is upregulated by SpoT. Through further research, we determined thatgluPis involved inH. pyloribiofilm formation and multidrug resistance. Furthermore, the average expression level ofgluPin the clinical MDR strains (C-MDR) was considerably higher than that in the clinical drug-sensitive strains (C-DSS). Taken together, our results revealed a novel molecular mechanism ofH. pyloriresistance to multidrug exposure.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
P. Blanco ◽  
F. Corona ◽  
J. L. Martínez

ABSTRACTMultidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of theStenotrophomonas maltophiliaSmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of eithersmeVWXorsmeYZpromoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression ofsmeVandsmeYin the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression ofsmeVWXwas induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggeredsmeYZexpression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute toS. maltophiliaresistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.


2019 ◽  
Vol 63 (3) ◽  
Author(s):  
María Pérez-Varela ◽  
Jordi Corral ◽  
Jesús Aranda ◽  
Jordi Barbé

ABSTRACT Although the relationship between Acinetobacter baumannii efflux pumps and antimicrobial resistance is well documented, less is known about the involvement of these proteins in the pathogenicity of this nosocomial pathogen. In previous work, we identified the AbaQ major facilitator superfamily (MFS) efflux pump and demonstrated its participation in the motility and virulence of A. baumannii. In the present study, we examined the role in these processes of A. baumannii transporters belonging to different superfamilies of efflux pumps. Genes encoding known or putative permeases belonging to efflux pump superfamilies other than the MFS were selected, and the corresponding knockouts were constructed. The antimicrobial susceptibilities of these mutants were consistent with previously reported data. In mutants of A. baumannii strain ATCC 17978 carrying inactivated genes encoding the efflux pumps A1S_2736 (resistance nodulation division [RND]), A1S_3371 (multidrug and toxic compound extrusion [MATE]), and A1S_0710 (small multidrug resistance [SMR]), as well as the newly described ATP-binding cassette (ABC) permeases A1S_1242 and A1S_2622, both surface-associated motility and virulence were reduced compared to the parental strain. However, inactivation of the genes encoding the known ABC permeases A1S_0536 and A1S_1535, the newly identified putative ABC permeases A1S_0027 and A1S_1057, or the proteobacterial antimicrobial compound efflux (PACE) transporters A1S_1503 and A1S_2063 had no effects on bacterial motility or virulence. Our results demonstrate the involvement of antimicrobial transporters belonging at least to five of the six known efflux pump superfamilies in both surface-associated motility and virulence in A. baumannii ATCC 17978.


2020 ◽  
Vol 6 (2) ◽  
pp. 134-142
Author(s):  
Susanne Sütterlin ◽  
Anna Heydecke ◽  
Eva Tano

Background and Aim: Extended-spectrum β-lactamases (ESBL) in Escherichia coli constitutes one of the major threats to modern medicine, and the increasing pollution with quaternary ammonium compounds (QACs) has been suspected to contribute to the spread of ESBL-producing bacteria. The aim of the study was to investigate ESBLA and ESBLM-C-producing E. coli isolates for their coresistance to QACs and their phylogeny isolated from a Swedish University Hospital. Materials and Methods: Coresistance in E. coli with production of ESBL enzymes of the type blaCTX-M (n=23) was compared to E. coli producing AmpC type ESBL enzymes blaCMY and blaDHA (n=27). All isolates were tested for susceptibility to antibiotics and QACs, and high-quality whole-genome sequences were analyzed for resistance determinants. Results: The plasmid-borne small multidrug resistance (SMR) efflux pump sugE(p) was solely present in blaCMY-producing E. coli (n=9), within the same genetic environment blaCMY–blc–sugE(p). Other small multidrug efflux pumps were found without association for ESBL-types: emrE (n=5) and the truncated qacEΔ1 (n=18). Conclusion: Coresistance of ESBL enzymes and SMR efflux pumps in E. coli was common and might indicate that other substances than antibiotics contribute to the spread and emergence of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document