scholarly journals BrucellaPeriplasmic Protein EipB Is a Molecular Determinant of Cell Envelope Integrity and Virulence

2019 ◽  
Vol 201 (12) ◽  
Author(s):  
Julien Herrou ◽  
Jonathan W. Willett ◽  
Aretha Fiebig ◽  
Daniel M. Czyż ◽  
Jason X. Cheng ◽  
...  

ABSTRACTThe Gram-negative cell envelope is a remarkable structure with core components that include an inner membrane, an outer membrane, and a peptidoglycan layer in the periplasmic space between. Multiple molecular systems function to maintain integrity of this essential barrier between the interior of the cell and its surrounding environment. We show that a conserved DUF1849 family protein, EipB, is secreted to the periplasmic space ofBrucellaspecies, a monophyletic group of intracellular pathogens. In the periplasm, EipB folds into an unusual 14-stranded β-spiral structure that resembles the LolA and LolB lipoprotein delivery system, though the overall fold of EipB is distinct from LolA/LolB. Deletion ofeipBresults in defects inBrucellacell envelope integrityin vitroand in maintenance of spleen colonization in a mouse model ofBrucella abortusinfection. Transposon disruption ofttpA, which encodes a periplasmic protein containing tetratricopeptide repeats, is synthetically lethal witheipBdeletion.ttpAis a reported virulence determinant inBrucella, and our studies ofttpAdeletion and overexpression strains provide evidence that this gene also contributes to cell envelope function. We conclude thateipBandttpAfunction in theBrucellaperiplasmic space to maintain cell envelope integrity, which facilitates survival in a mammalian host.IMPORTANCEBrucellaspecies cause brucellosis, a global zoonosis. A gene encoding a conserved DUF1849-family protein, which we have named EipB, is present in all sequencedBrucellaand several other genera in the classAlphaproteobacteria. The manuscript provides the first functional and structural characterization of a DUF1849 protein. We show that EipB is secreted to the periplasm where it forms a spiral-shaped antiparallel β protein that is a determinant of cell envelope integrityin vitroand virulence in an animal model of disease.eipBgenetically interacts withttpA, which also encodes a periplasmic protein. We propose that EipB and TtpA function as part of a system required for cell envelope homeostasis in selectAlphaproteobacteria.

2019 ◽  
Author(s):  
Julien Herrou ◽  
Jonathan W. Willett ◽  
Aretha Fiebig ◽  
Daniel M. Czyż ◽  
Jason X. Cheng ◽  
...  

SummaryThe Gram-negative cell envelope is a remarkably diverse structure with core components that include an inner membrane, an outer membrane, and a peptidoglycan layer in the periplasmic space between. We show that a conserved DUF1849-family protein, EipB, is secreted to the periplasmic space ofBrucella, a monophyletic group of intracellular pathogens. In the periplasm, EipB folds into an unusual fourteen-stranded β-spiral structure that contains a conserved disulfide bond. EipB has structural features that resemble the LolA and LolB lipoprotein delivery system, though the overall topology and fold of EipB is distinct from LolA/LolB. Deletion ofeipBresults in defects in both cell envelope integrityin vitroand in maintenance of spleen colonization in a mouse model ofB. abortusinfection. Transposon disruption ofttpA, which encodes a periplasmic tetratricopeptide repeat (TPR) protein, is synthetically lethal witheipBdeletion inB. abortus.ttpAis a known virulence determinant inB. melitensis, and our studies ofttpAdeletion and overexpression strains provide evidence thatttpA, likeeipB, contributes to cell envelope function inBrucella. We conclude thateipBandttpAfunction in theBrucellaperiplasmic space to maintain cell envelope integrity and to facilitate survival in a mammalian host.ImportanceBrucellaspecies cause brucellosis, a global zoonosis. A gene encoding a conserved uncharacterized protein, EipB, is present in all sequencedBrucellaand several other genera in the classAlphaproteobacteria.To our knowledge, this study presents the first functional and structural characterization of a protein from the DUF1849 family, to which EipB belongs. EipB is secreted to the periplasm where it forms a spiral-like anti-parallel β structure. Deletion ofBrucella eipBresults in defects of the cell envelope and in reduced virulence in an animal model of disease.eipBgenetically interacts withttpA, which also encodes a periplasmic protein. We propose that EipB and TtpA function as part of a system required for cell envelope homeostasis in selectAlphaproteobacteria.


2018 ◽  
Author(s):  
Julien Herrou ◽  
Jonathan W. Willett ◽  
Aretha Fiebig ◽  
Lydia M. Varesio ◽  
Daniel M. Czyż ◽  
...  

SummaryMolecular components of theBrucella abortuscell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function inB. abortusenvelope stress resistance and infection. Expression of this gene, which we nameeipA,is directly activated by the essential cell cycle regulator, CtrA.eipAencodes a soluble periplasmic protein that adopts an unusual eight-stranded β-barrel fold. Deletion ofeipAattenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the integrity of the cell envelope. Transposon disruption of genes required for LPS O-polysaccharide biosynthesis is synthetically lethal witheipAdeletion. This genetic connection between O-polysaccharide andeipAis corroborated by our discovery thateipAis essential inBrucella ovis, a naturally rough species that harbors mutations in several genes required for O-polysaccharide production. Conditional depletion ofeipAexpression inB. ovisresults in a cell chaining phenotype, providing evidence thateipAdirectly or indirectly influences cell division inBrucella. We conclude that EipA is a molecular determinant ofBrucellavirulence that functions to maintain cell envelope integrity and influences cell division.


Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.


2019 ◽  
Vol 201 (7) ◽  
Author(s):  
Lydia J. Kreuter ◽  
Andrea Weinfurtner ◽  
Alexander Ziegler ◽  
Julia Weigl ◽  
Jan Hoffmann ◽  
...  

ABSTRACTIn this study, the ATP synthase ofIgnicoccus hospitaliswas purified, characterized, and structurally compared to the respective enzymes of the otherIgnicoccusspecies, to shed light on energy conservation in this unique group of archaea. The crenarchaeal genusIgnicoccuscomprises three described species, i.e.,I. hospitalisandIgnicoccus islandicusfrom hot marine sediments near Iceland andIgnicoccus pacificusfrom a hydrothermal vent system in the Pacific Ocean. This genus is unique among all archaea due to the unusual cell envelope, consisting of two membranes that enclose a large intermembrane compartment (IMC).I. hospitalisis the best studied member of this genus, mainly because it is the only known host for the potentially parasitic archaeonNanoarchaeum equitans.I. hospitalisgrows chemolithoautotrophically, and its sole energy-yielding reaction is the reduction of elemental sulfur with molecular hydrogen, forming large amounts of hydrogen sulfide. This reaction generates an electrochemical gradient, which is used by the ATP synthase, located in the outer cellular membrane, to generate ATP inside the IMC. The genome ofI. hospitalisencodes nine subunits of an A-type ATP synthase, which we could identify in the purified complex. Although the maximalin vitroactivity of theI. hospitalisenzyme was measured around pH 6, the optimal stability of the A1AOcomplex seemed to be at pH 9. Interestingly, the soluble A1subcomplexes of the differentIgnicoccusspecies exhibited significant differences in their apparent molecular masses in native electrophoresis, although their behaviors in gel filtration and chromatography-mass spectrometry were very similar.IMPORTANCETheCrenarchaeotarepresent one of the major phyla within theArchaeadomain. This study describes the successful purification of a crenarchaeal ATP synthase. To date, all information about A-type ATP synthases is from euryarchaeal enzymes. The fact that it has not been possible to purify this enzyme complex from a member of theCrenarchaeotauntil now points to significant differences in stability, possibly caused by structural alterations. Furthermore, the study subjectI. hospitalishas a particular importance among crenarchaeotes, since it is the only known host ofN. equitans. The energy metabolism in this system is still poorly understood, and our results can help elucidate the unique relationship between these two microbes.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Dawn A. Manias ◽  
Gary M. Dunny

ABSTRACTIt was shown previously that the disruption of theahrCgene encoding a predicted ArgR family transcription factor results in a severe defect in biofilm formationin vitro, as well as a significant attenuation of virulence ofEnterococcus faecalisstrain OG1RF in multiple experimental infection models. Using transcriptome sequencing (RNA-seq), we observedahrC-dependent changes in the expression of more than 20 genes. AhrC-repressed genes included predicted determinants of arginine catabolism and several other metabolic genes and predicted transporters, while AhrC-activated genes included determinants involved in the production of surface protein adhesins. Most notably, the structural and regulatory genes of theebplocus encoding adhesive pili were positively regulated, as well as theacegene, encoding a collagen-binding adhesin. UsinglacZtranscription reporter fusions, we determined thatahrCand a secondargRtranscription factor gene,argR2, both function to activate the expression ofebpR, which directly activates the transcription of the pilus structural genes. Our data suggest that in the wild-typeE. faecalis, the low levels of EbpR limit the expression of pili and that biofilm biomass is also limited by the amount of pili expressed by the bacteria. The expression ofaceis similarly enhanced by AhrC and ArgR2, butaceexpression is not dependent on EbpR. Our results demonstrate the existence of novel regulatory cascades controlled by a pair of ArgR family transcription factors that might function as a heteromeric protein complex.IMPORTANCECell surface adhesins play critical roles in the formation of biofilms, host colonization, and the pathogenesis of opportunistic infections byEnterococcus faecalis. Here, we present new results showing that the expression of two major enterococcal surface adhesins,ebppili, and the collagen-binding protein Ace is positively regulated at the transcription level by twoargRfamily transcription factors, AhrC and ArgR2. In the case of pili, the direct target of regulation is theebpRgene, previously shown to activate the transcription of the pilus structural genes, while the activation ofacetranscription appears to be directly impacted by the two ArgR proteins. These transcription factors may represent new targets for blocking enterococcal infections.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Julianna Siciliano de Araújo ◽  
Cristiane França da Silva ◽  
Denise da Gama Jaén Batista ◽  
Aline Nefertiti ◽  
Ludmila Ferreira de Almeida Fiuza ◽  
...  

ABSTRACT Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 μM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.


2011 ◽  
Vol 80 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Kristi L. Frank ◽  
Aaron M. T. Barnes ◽  
Suzanne M. Grindle ◽  
Dawn A. Manias ◽  
Patrick M. Schlievert ◽  
...  

ABSTRACTEnterococcus faecalisis a member of the mammalian gastrointestinal microflora that has become a leading cause of nosocomial infections over the past several decades.E. faecalismust be able to adapt its physiology based on its surroundings in order to thrive in a mammalian host as both a commensal and a pathogen. We employed recombinase-basedin vivoexpression technology (RIVET) to identify promoters on theE. faecalisOG1RF chromosome that were specifically activated during the course of infection in a rabbit subdermal abscess model. The RIVET screen identified 249 putativein vivo-activated loci, over one-third of which are predicted to generate antisense transcripts. Three predicted antisense transcripts were detected inin vitro- andin vivo-grown cells, providing the first evidence ofin vivo-expressed antisense RNAs inE. faecalis. Deletions in thein vivo-activated genes that encode glutamate 5-kinase (proB[EF0038]), the transcriptional regulator EbrA (ebrA[EF1809]), and the membrane metalloprotease Eep (eep[EF2380]) did not hinder biofilm formation inin vitroassays. In a rabbit model of endocarditis, the ΔebrAstrain was fully virulent, the ΔproBstrain was slightly attenuated, and the Δeepstrain was severely attenuated. The Δeepvirulence defect could be complemented by the expression of the wild-type gene intrans. Microscopic analysis of early Δeepbiofilms revealed an abundance of small cellular aggregates that were not observed in wild-type biofilms. This work illustrates the use of a RIVET screen to provide information about the temporal activation of genes during infection, resulting in the identification and confirmation of a new virulence determinant in an important pathogen.


2012 ◽  
Vol 195 (2) ◽  
pp. 389-398 ◽  
Author(s):  
M. F. F. Arnold ◽  
A. F. Haag ◽  
S. Capewell ◽  
H. I. Boshoff ◽  
E. K. James ◽  
...  

ABSTRACTTheSinorhizobium melilotiBacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). TheMycobacterium tuberculosisBacA homolog was found to be important for the maintenance of chronic murine infections, yet itsin vivofunction is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that theM. tuberculosisBacA protein was able to partially complement the symbiotic defect of anS. melilotiBacA-deficient mutant on alfalfa plants and to protect this mutantin vitrofrom the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using anM. tuberculosisinsertion mutant. Furthermore,M. tuberculosisBacA-mediated protection of the legume symbiontS. melilotiagainst legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show thatM. tuberculosisBacA mediates peptide uptake of the truncated bovine AMP, Bac71-16. This process required a functional ATPase domain. We therefore suggest thatM. tuberculosisBacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.


2012 ◽  
Vol 80 (7) ◽  
pp. 2485-2492 ◽  
Author(s):  
Ching Wooen Sze ◽  
Kai Zhang ◽  
Toru Kariu ◽  
Utpal Pal ◽  
Chunhao Li

ABSTRACTBorrelia burgdorferi, the causative agent of Lyme disease, can be recovered from different organs of infected animals and patients, indicating that the spirochete is very invasive. Motility and chemotaxis contribute to the invasiveness ofB. burgdorferiand play important roles in the process of the disease. Recent reports have shown that motility is required for establishing infection in mammals. However, the role of chemotaxis in virulence remains elusive. Our previous studies showed thatcheA2, a gene encoding a histidine kinase, is essential for the chemotaxis ofB. burgdorferi. In this report, thecheA2gene was inactivated in a low-passage-number virulent strain ofB. burgdorferi. In vitroanalyses (microscopic observations, computer-based bacterial tracking analysis, swarm plate assays, and capillary tube assays) showed that thecheA2mutant failed to reverse and constantly ran in one direction; the mutant was nonchemotactic to attractants. Mouse needle infection studies showed that thecheA2mutant failed to infect either immunocompetent or immunodeficient mice and was quickly eliminated from the initial inoculation sites. Tick-mouse infection studies revealed that although the mutant was able to survive in ticks, it failed to establish a new infection in mice via tick bites. The altered phenotypes were completely restored when the mutant was complemented. Collectively, these data demonstrate thatB. burgdorferineeds chemotaxis to establish mammalian infection and to accomplish its natural enzootic cycle.


Sign in / Sign up

Export Citation Format

Share Document