scholarly journals Unique Regions of the Polysaccharide Copolymerase Wzz2fromPseudomonas aeruginosaAre Essential for O-Specific Antigen Chain Length Control

2019 ◽  
Vol 201 (15) ◽  
Author(s):  
Steven M. Huszczynski ◽  
Chelsea Coumoundouros ◽  
Phi Pham ◽  
Joseph S. Lam ◽  
Cezar M. Khursigara

ABSTRACTThe outer leaflet of the outer membrane of nearly all Gram-negative bacteria contains lipopolysaccharide (LPS). The distal end of LPS may be capped with O antigen, a long polysaccharide that can range from a few to hundreds of sugars in length. The chain length of the polysaccharide has many implications for bacterial survival and consequently is tightly controlled. In the Wzx/Wzy-dependent route of O antigen synthesis, one or more Wzz proteins determine the chain length via an unknown mechanism. To gain insight into this mechanism, we identified and characterized important regions of two Wzz proteins inPseudomonas aeruginosaserotype O13, which confer the production of “long” (Wzz1) and “very long” (Wzz2) chain lengths, respectively. We found that compared to Wzz1, Wzz2has distinct amino acid insertions in the central α-helices (insα6and insα7) and in membrane-distal (insL4) and -proximal (insIL) loops. When these regions were deleted in Wzz2, the mutant proteins conferred drastically shortened chain lengths. Within these regions we identified several conserved amino acid residues that were then targeted for site-directed mutagenesis. Our results implicate an RTE motif in loop 4 and a “hot spot” of charged and polar residues in insα7in the function of Wzz2. We present evidence that the functionally important residues of insα7are likely involved in stabilizing Wzz through coiled-coil interactions.IMPORTANCEO antigen is an important virulence factor presented on the cell surface of Gram-negative bacteria that is critical for bacterial physiology and pathogenesis. However, some aspects of O antigen biosynthesis, such as the mechanisms for determining polysaccharide chain length, are poorly understood. In this study, we identified unique regions in the O antigen chain length regulators (termed Wzz) of the problematic opportunistic pathogenPseudomonas aeruginosa. We show that these regions are critical for determining O antigen chain length, which provides new insight into the model of the Wzz mechanism. Ultimately, our work adds knowledge toward understanding an important step in the biosynthesis of this virulence factor, which is applicable to a wide range of Gram-negative pathogens.

2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Marietta John-White ◽  
James Gardiner ◽  
Priscilla Johanesen ◽  
Dena Lyras ◽  
Geoffrey Dumsday

ABSTRACT β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus. Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions. IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2013 ◽  
Vol 58 (3) ◽  
pp. 1763-1767 ◽  
Author(s):  
L. V. Perdigão-Neto ◽  
M. S. Oliveira ◽  
C. F. Rizek ◽  
C. M. D. M. Carrilho ◽  
S. F. Costa ◽  
...  

ABSTRACTFosfomycin may be a treatment option for multiresistant Gram-negative bacteria. This study compared susceptibility methods using 94 multiresistant clinical isolates. With agar dilution (AD), susceptibilities were 81%, 7%, 96%, and 100% (CLSI) and 0%, 0%, 96%, and 30% (EUCAST), respectively, forAcinetobacter baumannii,Pseudomonas aeruginosa,Klebsiella pneumoniae, andEnterobacterspp. Categorical agreement between Etest and AD forEnterobacteriaceaeandA. baumanniiwas ≥80%. Disk diffusion was adequate only forEnterobacter. CLSI criteria for urine may be adequate for systemic infections.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Jeffrey A. Melvin ◽  
Jordan R. Gaston ◽  
Shawn N. Phillips ◽  
Michael J. Springer ◽  
Christopher W. Marshall ◽  
...  

ABSTRACT How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.


2021 ◽  
Vol 70 (3) ◽  
Author(s):  
Bi-cong Wu ◽  
Njiri A. Olivia ◽  
John Mambwe Tembo ◽  
Ying-xia He ◽  
Ying-miao Zhang ◽  
...  

Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is frequently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs). Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/CD207. Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that express C-type lectins of human CD207, human CD209a and mouse CD209b. Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei . Animal assays were used to observe the dissemination of S. sonnei . Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. sonnei . Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph nodes and spleens. Conclusion. This work demonstrated that S. sonnei rough strains – by losing the virulence plasmid – invaded APCs through interactions with CD209 and CD207 receptors.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


2018 ◽  
Vol 7 (12) ◽  
Author(s):  
Henrike Miess ◽  
Ghazaleh Jahanshah ◽  
Heike Brötz-Oesterhelt ◽  
Matthias Willmann ◽  
Silke Peter ◽  
...  

Pseudomonas aeruginosa TUEPA7472 is extensively drug resistant (XDR) and is a representative Gram-negative rod that is multiresistant toward 4 classes of clinically relevant antibiotics (4MRGN). The 6.8-Mb draft genome sequence of this strain provides insight into these resistance mechanisms and the potential of the strain to produce virulence factors.


2015 ◽  
Vol 83 (8) ◽  
pp. 3006-3014 ◽  
Author(s):  
Meenu Mishra ◽  
Adam Ressler ◽  
Larry S. Schlesinger ◽  
Daniel J. Wozniak

Pseudomonas aeruginosais a versatile opportunistic pathogen that can cause devastating persistent infections. Complement is a highly conserved pathway of the innate immune system, and its role in the first line of defense against pathogens is widely appreciated. One of the earliest events in the complement cascade is the conversion of C3 to C3a and C3b, the latter typically binds to one or more acceptor molecules on the pathogen surface. We previously demonstrated that complement C3b binding acceptors exist on theP. aeruginosasurface. In the current study, we utilized either C3 polyclonal or C3b monoclonal antibodies in a far-Western technique followed by mass spectroscopy to identify the C3b acceptor molecule(s) on theP. aeruginosasurface. Our data provide evidence that OprF (an outer membrane porin, highly conserved in thePseudomonadaceae) binds C3b. AnoprF-deficientP. aeruginosastrain exhibits reduced C3 deposition compared to the wild type. We observed reduced internalization ofoprF-deficient bacteria by neutrophils after opsonization compared with wild-typeP. aeruginosa. Heterologous expression of OprF significantly enhanced C3b binding and increased serum-mediated bactericidal effects in complement-susceptibleEscherichia coli. Furthermore, the predicted secondary structure of the C-terminal, surface-exposed region of OprF has high structural identity to the OmpA domain of several other Gram-negative bacteria, one of which is known to bind C3b. Therefore, these findings provide new insights into the biology of complement interactions withP. aeruginosaand other Gram-negative bacteria.


2008 ◽  
Vol 15 (4) ◽  
pp. 590-597 ◽  
Author(s):  
Joseph Horzempa ◽  
Thomas K. Held ◽  
Alan S. Cross ◽  
Dana Furst ◽  
Mohammed Qutyan ◽  
...  

ABSTRACT The O antigen is both a major structural outer membrane component and the dominant epitope of most gram-negative bacteria. Pseudomonas aeruginosa 1244 produces a type IV pilus and covalently links an O-antigen repeating unit to each pilin monomer. Here we show that immunization of mice with pure pilin from strain 1244 by use of either the mouse respiratory model or the thermal injury model resulted in protection from challenge with a pilus-null O-antigen-producing 1244 mutant. These results provide evidence that the pilin glycan stimulates a protective response that targets the O antigen, suggesting that this system could be used as the basis for the development of a variety of bioconjugate vaccines protective against gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document