scholarly journals Static Growth Promotes PrrF and 2-Alkyl-4(1H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa

2020 ◽  
Vol 202 (24) ◽  
Author(s):  
Luke K. Brewer ◽  
Weiliang Huang ◽  
Brandy J. Hackert ◽  
Maureen A. Kane ◽  
Amanda G. Oglesby

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallonutrient, is altered in static P. aeruginosa cultures. Specifically, we observed a loss of iron-induced expression of proteins for oxidative phosphorylation, tricarboxylic acid (TCA) cycle metabolism under static conditions. Moreover, we identified type VI secretion as a target of iron regulation in P. aeruginosa cells under static but not shaking conditions, and we present evidence that this regulation occurs via PrrF small regulatory RNA (sRNA)-dependent production of 2-alkyl-4(1H)-quinolone metabolites. These results yield new iron regulation paradigms in an important opportunistic pathogen and highlight the need to redefine iron homeostasis in static microbial communities. IMPORTANCE Host-mediated iron starvation is a broadly conserved signal for microbial pathogens to upregulate expression of virulence traits required for successful infection. Historically, global iron regulatory studies in microorganisms have been conducted in shaking cultures to ensure culture homogeneity, yet these conditions are likely not reflective of growth during infection. Pseudomonas aeruginosa is a well-studied opportunistic pathogen and model organism for iron regulatory studies. Iron homeostasis is maintained through the Fur protein and PrrF small regulatory sRNAs, the functions of which are highly conserved in many other bacterial species. In the current study, we examined how static growth affects the known iron and PrrF regulons of P. aeruginosa, leading to the discovery of novel PrrF-regulated virulence processes. This study demonstrates how the utilization of distinct growth models can enhance our understanding of basic physiological processes that may also affect pathogenesis.

2019 ◽  
Author(s):  
Luke K. Brewer ◽  
Weiliang Huang ◽  
Brandy Hackert ◽  
Maureen A. Kane ◽  
Amanda G. Oglesby

ABSTRACTPseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections, the latter of which are often polymicrobial. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallo-nutrient, is altered in static P. aeruginosa cultures. We identified type VI secretion as a target of iron regulation in P. aeruginosa in static but not shaking conditions, and we present evidence that this regulation occurs via PrrF sRNA-dependent production of 2-alkyl-4(1H)-quinolone metabolites. We further discovered that iron-regulated interactions between P. aeruginosa and a Gram-positive opportunistic pathogen, Staphylococcus aureus, are mediated by distinct factors in shaking versus static bacterial cultures. These results yield new bacterial iron regulation paradigms and highlight the need to re-define iron homeostasis in static microbial communities.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Tianyuan Cao ◽  
Jonathan V. Sweedler ◽  
Paul W. Bohn ◽  
Joshua D. Shrout

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen important to diseases such as cystic fibrosis. P. aeruginosa has multiple quorum-sensing (QS) systems, one of which utilizes the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). Here, we use hyperspectral Raman imaging to elucidate the spatiotemporal PQS distributions that determine how P. aeruginosa regulates surface colonization and its response to both metabolic stress and competition from other bacterial strains. These chemical imaging experiments illustrate the strong link between environmental challenges, such as metabolic stress caused by nutritional limitations or the presence of another bacterial species, and PQS signaling. Metabolic stress elicits a complex response in which limited nutrients induce the bacteria to produce PQS earlier, but the bacteria may also pause PQS production entirely if the nutrient concentration is too low. Separately, coculturing P. aeruginosa in the proximity of another bacterial species, or its culture supernatant, results in earlier production of PQS. However, these differences in PQS appearance are not observed for all alkyl quinolones (AQs) measured; the spatiotemporal response of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) is highly uniform for most conditions. These insights on the spatiotemporal distributions of quinolones provide additional perspective on the behavior of P. aeruginosa in response to different environmental cues. IMPORTANCE Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Angela T. Nguyen ◽  
Luke K. Brewer ◽  
Justin Bevere ◽  
Jace W. Jones ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that requires iron for virulence. Iron homeostasis is maintained in part by the PrrF1 and PrrF2 small RNAs (sRNAs), which block the expression of iron-containing proteins under iron-depleted conditions. The PrrF sRNAs also promote the production of the Pseudomonas quinolone signal (PQS), a quorum sensing molecule that activates the expression of several virulence genes. The tandem arrangement of the prrF genes allows for expression of a third sRNA, PrrH, which is predicted to regulate gene expression through its unique sequence derived from the prrF1-prrF2 intergenic (IG) sequence (the PrrHIG sequence). Previous studies showed that the prrF locus is required for acute lung infection. However, the individual functions of the PrrF and PrrH sRNAs were not determined. Here, we describe a system for differentiating PrrF and PrrH functions by deleting the PrrHIG sequence [prrF(ΔHIG)]. Our analyses of this construct indicate that the PrrF sRNAs, but not PrrH, are required for acute lung infection by P. aeruginosa. Moreover, we show that the virulence defect of the ΔprrF1-prrF2 mutant is due to decreased bacterial burden during acute lung infection. In vivo analysis of gene expression in lung homogenates shows that PrrF-mediated regulation of genes for iron-containing proteins is disrupted in the ΔprrF1-prrF2 mutant during infection, while the expression of genes that mediate PrrF-regulated PQS production are not affected by prrF deletion in vivo. Combined, these studies demonstrate that regulation of iron utilization plays a critical role in P. aeruginosa's ability to survive during infection.


2014 ◽  
Vol 83 (3) ◽  
pp. 863-875 ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Daniel A. Powell ◽  
Angela T. Nguyen ◽  
Maura O'Neill ◽  
Louise Djapgne ◽  
...  

Pseudomonas aeruginosais an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part ofP. aeruginosa'siron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem inP. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identifiedphuS, encoding a heme binding protein involved in heme acquisition, andvreR, encoding a previously identified regulator ofP. aeruginosavirulence genes, as novel targets ofprrF-mediated heme regulation. Finally, we showed that theprrFlocus encoding the PrrF and PrrH sRNAs is required forP. aeruginosavirulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2deletion mutant protects against future challenge with wild-typeP. aeruginosa. Combined, these data demonstrate that theprrF-encoded sRNAs are critical regulators ofP. aeruginosavirulence.


mBio ◽  
2012 ◽  
Vol 3 (6) ◽  
Author(s):  
V. Cattoir ◽  
G. Narasimhan ◽  
D. Skurnik ◽  
H. Aschard ◽  
D. Roux ◽  
...  

ABSTRACTAdaptation of bacterial pathogens to a host can lead to the selection and accumulation of specific mutations in their genomes with profound effects on the overall physiology and virulence of the organisms. The opportunistic pathogenPseudomonas aeruginosais capable of colonizing the respiratory tract of individuals with cystic fibrosis (CF), where it undergoes evolution to optimize survival as a persistent chronic human colonizer. The transcriptome of a host-adapted, alginate-overproducing isolate from a CF patient was determined following growth of the bacteria in the presence of human respiratory mucus. This stable mucoid strain responded to a number of regulatory inputs from the mucus, resulting in an unexpected repression of alginate production. Mucus in the medium also induced the production of catalases and additional peroxide-detoxifying enzymes and caused reorganization of pathways of energy generation. A specific antibacterial type VI secretion system was also induced in mucus-grown cells. Finally, a group of small regulatory RNAs was identified and a fraction of these were mucus regulated. This report provides a snapshot of responses in a pathogen adapted to a human host through assimilation of regulatory signals from tissues, optimizing its long-term survival potential.IMPORTANCEThe basis for chronic colonization of patients with cystic fibrosis (CF) by the opportunistic pathogenPseudomonas aeruginosacontinues to represent a challenging problem for basic scientists and clinicians. In this study, the host-adapted, alginate-overproducingPseudomonas aeruginosa2192 strain was used to assess the changes in its transcript levels following growth in respiratory CF mucus. Several significant and unexpected discoveries were made: (i) although the alginate overproduction in strain 2192 was caused by a stable mutation, a mucus-derived signal caused reduction in the transcript levels of alginate biosynthetic genes; (ii) mucus activated the expression of the type VI secretion system, a mechanism for killing of other bacteria in a mixed population; (iii) expression of a number of genes involved in respiration was altered; and (iv) several small regulatory RNAs were identified, some being mucus regulated. This work highlights the strong influence of the host environment in shaping bacterial survival strategies.


2015 ◽  
Vol 197 (12) ◽  
pp. 2003-2011 ◽  
Author(s):  
Dilek Ince ◽  
Fayyaz S. Sutterwala ◽  
Timothy L. Yahr

ABSTRACTThe opportunistic pathogenPseudomonas aeruginosautilizes an injectisome-type III secretion system (injectisome-T3SS) to elicit cytotoxicity toward epithelial cells and macrophages. Macrophage killing results from the cytotoxic properties of the translocated effector proteins (ExoS, ExoT, ExoU, and ExoY) and inflammasome-mediated induction of pyroptosis. Inflammasome activation can occur following Nlrc4-mediated recognition of cytosolic translocated flagellin (FliC). In the present study, we demonstrate that FliC is a secretion substrate of both the injectisome- and flagellum-associated T3SSs. Molecular analyses indicate that the first 20 amino-terminal residues of FliC are sufficient for secretion by the injectisome-T3SS and that the first 100 residues are sufficient for translocation of FliC into host cells. Although maximal inflammasome activation requires FliC, activation can also occur in the absence of FliC. This prompted us to examine whether other flagellar components might also be translocated into cells to elicit inflammasome activation. Indeed, we find that the flagellar cap (FliD), hook-associated (FlgK and FlgL), hook (FlgE), and rod (FlgE) proteins are secretion substrates of the injectisome-T3SS. None of these proteins, however, result in increased inflammasome activation when they are overexpressed in afliCmutant and appear to be translocated into host cells. While a role in inflammasome activation has been excluded, these data raise the possibility that flagellar components, which are highly conserved between different bacterial species, trigger other specific host responses from the extracellular milieu or contribute to the pathogenesis ofP. aeruginosa.IMPORTANCEThe inflammasome is a host defense mechanism that recognizes invading bacteria and triggers an inflammatory immune response. The opportunistic pathogenP. aeruginosaproduces both inflammasome agonists and antagonists. In this study, we demonstrate that overexpression of an agonist suppresses the activity of an antagonist, thereby resulting in inflammasome activation. Since the relative expression levels of agonists and antagonists likely vary between strains, these differences could be important predictors of whether a particularP. aeruginosastrain elicits inflammasome activation.


2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Andrea Sass ◽  
Tom Coenye

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is able to cause various infections, including airway infections in cystic fibrosis patients. Here, we present the complete closed and annotated genome sequence of P. aeruginosa AA2, an isolate obtained early during infection of the respiratory tract of a German cystic fibrosis patient.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Yulu Wang ◽  
Liyue Wang ◽  
Jian Zhang ◽  
Xintong Duan ◽  
Yuqi Feng ◽  
...  

ABSTRACT The biosynthesis of histidine, a proteinogenic amino acid, has been extensively studied due to its importance in bacterial growth and survival. Histidinol-phosphate phosphatase (Hol-Pase), which is responsible for the penultimate step of histidine biosynthesis, is generally the last enzyme to be characterized in many bacteria because its origin and evolution are more complex compared to other enzymes in histidine biosynthesis. However, none of the enzymes in histidine biosynthesis, including Hol-Pase, have been characterized in Pseudomonas aeruginosa, which is an important opportunistic Gram-negative pathogen that can cause serious human infections. In our previous work, a transposon mutant of P. aeruginosa was found to display a growth defect on glucose-containing minimal solid medium. In this study, we found that the growth defect was due to incomplete histidine auxotrophy caused by PA0335 inactivation. Subsequently, PA0335 was shown to encode Hol-Pase, and its function and enzymatic activity were investigated using genetic and biochemical methods. In addition to PA0335, the roles of 12 other predicted genes involved in histidine biosynthesis in P. aeruginosa were examined. Among them, hisC2 (PA3165), hisH2 (PA3152), and hisF2 (PA3151) were found to be dispensable for histidine synthesis, whereas hisG (PA4449), hisE (PA5067), hisF1 (PA5140), hisB (PA5143), hisI (PA5066), hisC1 (PA4447), and hisA (PA5141) were essential because deletion of each resulted in complete histidine auxotrophy; similar to the case for PA0335, hisH1 (PA5142) or hisD (PA4448) deletion caused incomplete histidine auxotrophy. Taken together, our results outline the histidine synthesis pathway of P. aeruginosa. IMPORTANCE Histidine is a common amino acid in proteins. Because it plays critical roles in bacterial metabolism, its biosynthetic pathway in many bacteria has been elucidated. However, the pathway remains unclear in Pseudomonas aeruginosa, an important opportunistic pathogen in clinical settings; in particular, there is scant knowledge about histidinol-phosphate phosphatase (Hol-Pase), which has a complex origin and evolution. In this study, P. aeruginosa Hol-Pase was identified and characterized. Furthermore, the roles of all other predicted genes involved in histidine biosynthesis were examined. Our results illustrate the histidine synthesis pathway of P. aeruginosa. The knowledge obtained from this study may help in developing strategies to control P. aeruginosa-related infections. In addition, some enzymes of the histidine synthesis pathway from P. aeruginosa might be used as elements of histidine synthetic biology in other industrial microorganisms.


2017 ◽  
Vol 5 (44) ◽  
Author(s):  
Yohei Kumagai ◽  
Susumu Yoshizawa ◽  
Keiji Nakamura ◽  
Yoshitoshi Ogura ◽  
Tetsuya Hayashi ◽  
...  

ABSTRACT Pseudomonas aeruginosa is one of the most common model bacterial species, and genomes of hundreds of strains of this species have been sequenced to date. However, currently there is only one available genome of an oceanic isolate. Here, we report two complete and six draft genome sequences of P. aeruginosa isolates from the open ocean.


2015 ◽  
Vol 59 (6) ◽  
pp. 3246-3251 ◽  
Author(s):  
Jerónimo Rodríguez-Beltrán ◽  
Gabriel Cabot ◽  
Estela Ynés Valencia ◽  
Coloma Costas ◽  
German Bou ◽  
...  

ABSTRACTThe modulating effect ofN-acetylcysteine (NAC) on the activity of different antibiotics has been studied inPseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained withP. aeruginosaclinical isolates. Our results indicate that imipenem-susceptibleP. aeruginosastrains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species,Escherichia coliandAcinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes.


Sign in / Sign up

Export Citation Format

Share Document