scholarly journals Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus

2019 ◽  
Vol 202 (4) ◽  
Author(s):  
Kevin D. de Young ◽  
Gabriele Stankeviciute ◽  
Eric A. Klein

ABSTRACT Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus, when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene (manA) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation. IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene (manA) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks.

2019 ◽  
Author(s):  
Kevin D. de Young ◽  
Gabriele Stankeviciute ◽  
Eric A. Klein

AbstractBacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus, when grown under phosphate limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene (manA) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity resulting in a 5-fold increase in the intracellular fructose 6-phosphate: mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator spdR inhibited stalk elongation in wild-type cells while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation.ImportanceBacteria have various mechanisms for adapting to environmental perturbations including morphological alterations. During phosphate limitation, Caulobacter crescentus dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanism of stalk synthesis is not well characterized. We isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene (manA) that blocked stalk elongation, despite normal activation of the phosphate-starvation response. The mutant ManA produced an imbalance in sugar-phosphate concentrations that impaired the synthesis of cellular envelope components and prevented entry into stationary phase. Overproduction of the alarmone ppGpp, which promotes stationary phase entry, increased stalk length in the manA mutant demonstrating that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation.


2017 ◽  
Author(s):  
Elizabeth L. Meier ◽  
Qing Yao ◽  
Allison K. Daitch ◽  
Grant J. Jensen ◽  
Erin D. Goley

AbstractDuring its life cycle,Caulobacter crescentusundergoes a series of coordinated shape changes, including generation of a polar stalk and reshaping of the cell envelope to produce new daughter cells through the process of cytokinesis. The mechanisms by which these morphogenetic processes are coordinated in time and space remain largely unknown. Here we demonstrate that the conserved division complex FtsEX controls both the early and late stages of cytokinesis inC. crescentus, namely initiation of constriction and final cell separation. ΔftsEcells display a striking phenotype: cells are chained, with skinny connections between cell bodies resulting from defects in inner membrane fusion and cell separation. Surprisingly, the thin connections in ΔftsEcells share morphological and molecular features withC. crescentusstalks. Our data uncover unanticipated morphogenetic plasticity inC. crescentus, with loss of FtsE causing a stalk-like program to take over at failed division sites and yield novel cell morphology.Author SummaryBacterial cell shape is genetically hardwired and is critical for fitness and, in certain cases, pathogenesis. In most bacteria, a semi-rigid structure called the cell wall surrounds the inner membrane, offering protection against cell lysis while simultaneously maintaining cell shape. A highly dynamic macromolecular structure, the cell wall undergoes extensive remodeling as bacterial cells grow and divide. We demonstrate that a broadly conserved cell division complex, FtsEX, relays signals from the cytoplasm to the cell wall to regulate key developmental shape changes in the α-proteobacteriumCaulobacter crescentus. Consistent with studies in diverse bacteria, we observe strong synthetic interactions betweenftsEand cell wall hydrolytic factors, suggesting that regulation of cell wall remodeling is a conserved function of FtsEX. Loss of FtsE causes morphological defects associated with both the early and late stages of division. Intriguingly, without FtsE, cells frequently fail to separate and instead elaborate a thin, tubular structure between cell bodies, a growth mode observed in other α-proteobacteria. Overall, our results highlight the plasticity of bacterial cell shape and demonstrate how altering the activity of one morphogenetic program can produce diverse morphologies resembling those of other bacteria in nature.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Gabriele Stankeviciute ◽  
Ziqiang Guan ◽  
Howard Goldfine ◽  
Eric A. Klein

ABSTRACTCaulobacter crescentusadapts to phosphate starvation by elongating its cell body and a polar stalk structure. The stalk is an extension of the Gram-negative envelope containing inner and outer membranes as well as a peptidoglycan cell wall. Cellular elongation requires a 6- to 7-fold increase in membrane synthesis, yet phosphate limitation would preclude the incorporation of additional phospholipids. In the place of phospholipids,C. crescentuscan synthesize several glycolipid species, including a novel glycosphingolipid (GSL-2). While glycosphingolipids are ubiquitous in eukaryotes, the presence of GSL-2 inC. crescentusis surprising since GSLs had previously been found only inSphingomonasspecies, in which they play a role in outer membrane integrity. In this paper, we identify three proteins required for GSL-2 synthesis: CcbF catalyzes the first step in ceramide synthesis, while Sgt1 and Sgt2 sequentially glycosylate ceramides to produce GSL-2. Unlike inSphingomonas, GSLs are nonessential inC. crescentus; however, the presence of ceramides does contribute to phage resistance and susceptibility to the cationic antimicrobial peptide polymyxin B. The identification of a novel lipid species specifically produced upon phosphate starvation suggests that bacteria may be able to synthesize a wider variety of lipids in response to stresses than previously observed. Uncovering these lipids and their functional relevance will provide greater insight into microbial physiology and environmental adaptation.IMPORTANCEBacteria adapt to environmental changes in a variety of ways, including altering their cell shape.Caulobacter crescentusadapts to phosphate starvation by elongating its cell body and a polar stalk structure containing both inner and outer membranes. While we generally think of cellular membranes being composed largely of phospholipids, cellular elongation occurs when environmental phosphate, and therefore phospholipid synthesis, is limited. In order to adapt to these environmental constraints,C. crescentussynthesizes several glycolipid species, including a novel glycosphingolipid. This finding is significant because glycosphingolipids, while ubiquitous in eukaryotes, are extremely rare in bacteria. In this paper, we identify three proteins required for GSL-2 synthesis and demonstrate that they contribute to phage resistance. These findings suggest that bacteria may synthesize a wider variety of lipids in response to stresses than previously observed.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Kristina Heinrich ◽  
David J. Leslie ◽  
Michaela Morlock ◽  
Stefan Bertilsson ◽  
Kristina Jonas

ABSTRACT All living cells are characterized by certain cell shapes and sizes. Many bacteria can change these properties depending on the growth conditions. The underlying mechanisms and the ecological relevance of changing cell shape and size remain unclear in most cases. One bacterium that undergoes extensive shape-shifting in response to changing growth conditions is the freshwater bacterium Caulobacter crescentus. When incubated for an extended time in stationary phase, a subpopulation of C. crescentus forms viable filamentous cells with a helical shape. Here, we demonstrated that this stationary-phase-induced filamentation results from downregulation of most critical cell cycle regulators and a consequent block of DNA replication and cell division while cell growth and metabolism continue. Our data indicate that this response is triggered by a combination of three stresses caused by prolonged growth in complex medium, namely, the depletion of phosphate, alkaline pH, and an excess of ammonium. We found that these conditions are experienced in the summer months during algal blooms near the surface in freshwater lakes, a natural habitat of C. crescentus, suggesting that filamentous growth is a common response of C. crescentus to its environment. Finally, we demonstrate that when grown in a biofilm, the filamentous cells can reach beyond the surface of the biofilm and potentially access nutrients or release progeny. Altogether, our work highlights the ability of bacteria to alter their morphology and suggests how this behavior might enable adaptation to changing environments. IMPORTANCE Many bacteria drastically change their cell size and morphology in response to changing environmental conditions. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus and related species transform into filamentous cells in response to conditions that commonly occur in their natural habitat as a result of algal blooms during the warm summer months. These filamentous cells may be better able to scavenge nutrients when they grow in biofilms and to escape from protist predation during planktonic growth. Our findings suggest that seasonal changes and variations in the microbial composition of the natural habitat can have profound impact on the cell biology of individual organisms. Furthermore, our work highlights that bacteria exist in morphological and physiological states in nature that can strongly differ from those commonly studied in the laboratory.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Stefano Sanselicio ◽  
Patrick H. Viollier

ABSTRACT Despite the myriad of different sensory domains encoded in bacterial genomes, only a few are known to control the cell cycle. Here, suppressor genetics was used to unveil the regulatory interplay between the PAS (Per-Arnt-Sim) domain protein MopJ and the uncharacterized GAF (cyclic GMP-phosphodiesterase–adenylyl cyclase–FhlA) domain protein PtsP, which resembles an alternative component of the phosphoenolpyruvate (PEP) transferase system. Both of these systems indirectly target the Caulobacter crescentus cell cycle master regulator CtrA, but in different ways. While MopJ acts on CtrA via the cell cycle kinases DivJ and DivL, which control the removal of CtrA at the G1-S transition, our data show that PtsP signals through the conserved alarmone (p)ppGpp, which prevents CtrA cycling under nutritional stress and in stationary phase. We found that PtsP interacts genetically and physically with the (p)ppGpp synthase/hydrolase SpoT and that it modulates several promoters that are directly activated by the cell cycle transcriptional regulator GcrA. Thus, parallel systems integrate nutritional and systemic signals within the cell cycle transcriptional network, converging on the essential alphaproteobacterial regulator CtrA while also affecting global cell cycle transcription in other ways. IMPORTANCE Many alphaproteobacteria divide asymmetrically, and their cell cycle progression is carefully regulated. How these bacteria control the cell cycle in response to nutrient limitation is not well understood. Here, we identify a multicomponent signaling pathway that acts on the cell cycle when nutrients become scarce in stationary phase. We show that efficient accumulation of the master cell cycle regulator CtrA in stationary-phase Caulobacter crescentus cells requires the previously identified stationary-phase/cell cycle regulator MopJ as well as the phosphoenolpyruvate protein phosphotransferase PtsP, which acts via the conserved (p)ppGpp synthase SpoT. We identify cell cycle-regulated promoters that are affected by this pathway, providing an explanation of how (p)ppGpp-signaling might couple starvation to control cell cycle progression in Caulobacter spp. and likely other Alphaproteobacteria. This pathway has the potential to integrate carbon fluctuation into cell cycle control, since in phosphotransferase systems it is the glycolytic product phosphenolpyruvate (PEP) rather than ATP that is used as the phosphor donor for phosphorylation.


2015 ◽  
Vol 197 (22) ◽  
pp. 3521-3532 ◽  
Author(s):  
Richard Wargachuk ◽  
Gregory T. Marczynski

ABSTRACTIt is not known how diverse bacteria regulate chromosome replication. Based onEscherichia colistudies, DnaA initiates replication and the homolog of DnaA (Hda) inactivates DnaA using the RIDA (regulatoryinactivation ofDnaA) mechanism that thereby prevents extra chromosome replication cycles. RIDA may be widespread, because the distantly relatedCaulobacter crescentushomolog HdaA also prevents extra chromosome replication (J. Collier and L. Shapiro, J Bacteriol 191:5706–5715, 2009,http://dx.doi.org/10.1128/JB.00525-09). To further study the HdaA/RIDA mechanism, we created aC. crescentusstrain that shuts offhdaAtranscription and rapidly clears HdaA protein. We confirm that HdaA prevents extra replication, since cells lacking HdaA accumulate extra chromosome DNA. DnaA binds nucleotides ATP and ADP, and our results are consistent with the establishedE. colimechanism whereby Hda converts active DnaA-ATP to inactive DnaA-ADP. However, unlikeE. coliDnaA,C. crescentusDnaA is also regulated by selective proteolysis.C. crescentuscells lacking HdaA reduce DnaA proteolysis in logarithmically growing cells, thereby implicating HdaA in this selective DnaA turnover mechanism. Also, wild-typeC. crescentuscells remove all DnaA protein when they enter stationary phase. However, cells lacking HdaA retain stable DnaA protein even when they stop growing in nutrient-depleted medium that induces complete DnaA proteolysis in wild-type cells. Additional experiments argue for a distinct HdaA-dependent mechanism that selectively removes DnaA prior to stationary phase. Related freshwaterCaulobacterspecies also remove DnaA during entry to stationary phase, implying a wider role for HdaA as a novel component of programed proteolysis.IMPORTANCEBacteria must regulate chromosome replication, and yet the mechanisms are not completely understood and not fully exploited for antibiotic development. Based onEscherichia colistudies, DnaA initiates replication, and the homolog of DnaA (Hda) inactivates DnaA to prevent extra replication. The distantly relatedCaulobacter crescentushomolog HdaA also regulates chromosome replication. Here we unexpectedly discovered that unlike theE. coliHda, theC. crescentusHdaA also regulates DnaA proteolysis. Furthermore, this HdaA proteolysis acts in logarithmically growing and in stationary-phase cells and therefore in two very different physiological states. We argue that HdaA acts to help time chromosome replications in logarithmically growing cells and that it is an unexpected component of the programed entry into stationary phase.


2017 ◽  
Vol 199 (13) ◽  
Author(s):  
Angel A. Aguirre ◽  
Alexandre M. Vicente ◽  
Steven W. Hardwick ◽  
Daniela M. Alvelos ◽  
Ricardo R. Mazzon ◽  
...  

ABSTRACT In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium Caulobacter crescentus, which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immunoprecipitations of extracts from cells expressing an epitope-tagged RNase E reveal that RhlE, another member of the DEAD-box helicase family, associates with the degradosome at temperatures below those optimum for growth. Phenotype analyses of rhlE, rhlB, and rhlE rhlB mutant strains show that RhlE is important for cell fitness at low temperature and its role may not be substituted by RhlB. Transcriptional and translational fusions of rhlE to the lacZ reporter gene and immunoblot analysis of an epitope-tagged RhlE indicate that its expression is induced upon temperature decrease, mainly through posttranscriptional regulation. RNase E pulldown assays show that other proteins, including the transcription termination factor Rho, a second DEAD-box RNA helicase, and ribosomal protein S1, also associate with the degradosome at low temperature. The results suggest that the RNA degradosome assembly can be remodeled with environmental change to alter its repertoire of helicases and other accessory proteins. IMPORTANCE DEAD-box RNA helicases are often present in the RNA degradosome complex, helping unwind secondary structures to facilitate degradation. Caulobacter crescentus is an interesting organism to investigate degradosome remodeling with change in temperature, because it thrives in freshwater bodies and withstands low temperature. In this study, we show that at low temperature, the cold-induced DEAD-box RNA helicase RhlE is recruited to the RNA degradosome, along with other helicases and the Rho protein. RhlE is essential for bacterial fitness at low temperature, and its function may not be complemented by RhlB, although RhlE is able to complement for rhlB loss. These results suggest that RhlE has a specific role in the degradosome at low temperature, potentially improving adaptation to this condition.


2012 ◽  
Vol 78 (7) ◽  
pp. 2120-2127 ◽  
Author(s):  
Lei Liu ◽  
Huichun Tong ◽  
Xiuzhu Dong

ABSTRACTComplex interspecies interactions occur constantly between oral commensals and the opportunistic pathogenStreptococcus mutansin dental plaque. Previously, we showed that oral commensalStreptococcus oligofermentanspossesses multiple enzymes for H2O2production, especially lactate oxidase (Lox), allowing it to out-competeS. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene inS. oligofermentans. Apoxdeletion mutant completely lost Pox activity, while ectopically expressedpoxrestored activity. Pox was determined to produce most of the H2O2in the earlier growth phase and log phase, while Lox mainly contributed to H2O2production in stationary phase. Bothpoxandloxwere expressed throughout the growth phase, while expression of theloxgene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H2O2can be attributed to differential gene expression and substrate availability. Interestingly, inactivation ofpoxcauses a dramatic reduction in H2O2production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H2O2. In anin vitrotwo-species biofilm experiment, thepoxmutant ofS. oligofermentansfailed to inhibitS. mutanseven thoughloxwas active. In summary,S. oligofermentansdevelops a Pox-Lox synergy strategy to maximize its H2O2formation so as to win the interspecies competition.


2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Nikolas Duszenko ◽  
Nicole R. Buan

ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document