scholarly journals The Atypical Hybrid Histidine Protein Kinase RodK in Myxococcus xanthus: Spatial Proximity Supersedes Kinetic Preference in Phosphotransfer Reactions

2009 ◽  
Vol 191 (6) ◽  
pp. 1765-1776 ◽  
Author(s):  
Sigrun Wegener-Feldbrügge ◽  
Lotte Søgaard-Andersen

ABSTRACT Many proteins of two-component signal transduction systems (TCS) have domain structures that do not comply with a phosphate flow as observed in linear TCS, phosphorelays, or simple branched pathways. An example is RodK, which is essential for fruiting body formation in Myxococcus xanthus and, in addition to a sensor domain, consists of a kinase domain and three receiver domains (RodK-R1, -R2, and -R3), all of which are functionally important. We identified the RokA response regulator as part of the RodK pathway. In vitro the isolated RodK kinase domain engages in phosphotransfer to RodK-R3 and RokA, with a kinetic preference for RokA. However, in the context of the full-length protein, the RodK kinase domain has a preference for phosphotransfer to RodK-R3 over RokA. We suggest that in full-length RodK, the spatial proximity of the RodK kinase domain and RodK-R3 compensate for the kinetic preference of the isolated kinase domain for RokA. Thus, the kinetic preference observed using an isolated kinase domain of a hybrid kinase does not necessarily reflect the phosphotransfer preference of the full-length protein. We speculate that the phosphorylation status of RodK-R1 and RodK-R2 determines whether RodK engages in phosphotransfer to RodK-R3 or RokA in vivo.

2005 ◽  
Vol 390 (3) ◽  
pp. 769-776 ◽  
Author(s):  
Sarah Sanowar ◽  
Hervé Le Moual

Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate the PhoP/PhoQ phosphorylation cascade modulating the transcription of PhoP-regulated genes. In contrast, high concentrations of extracellular Mg2+ stimulate the dephosphorylation of the response regulator PhoP by the PhoQ kinase sensor. In the present study, we report the purification and functional reconstitution of PhoQHis, a PhoQ variant with a C-terminal His tag, into Escherichia coli liposomes. The functionality of PhoQHis was essentially similar to that of PhoQ as shown in vivo and in vitro. Purified PhoQHis was inserted into liposomes in a unidirectional orientation, with the sensory domain facing the lumen and the catalytic domain facing the extraluminal environment. Reconstituted PhoQHis exhibited all the catalytic activities that have been described for histidine kinase sensors. Reconstituted PhoQHis was capable of autokinase activity when incubated in the presence of Mg2+-ATP. The phosphoryl group could be transferred from reconstituted PhoQHis to PhoP. Reconstituted PhoQHis catalysed the dephosphorylation of phospho-PhoP and this activity was stimulated by the addition of extraluminal ADP.


2006 ◽  
Vol 188 (14) ◽  
pp. 5167-5176 ◽  
Author(s):  
Deborah R. Yoder-Himes ◽  
Lee Kroos

ABSTRACT The bacterium Myxococcus xanthus employs extracellular signals to coordinate aggregation and sporulation during multicellular development. Extracellular, contact-dependent signaling that involves the CsgA protein (called C-signaling) activates FruA, a putative response regulator that governs a branched signaling pathway inside cells. One branch regulates cell movement, leading to aggregation. The other branch regulates gene expression, leading to sporulation. C-signaling is required for full expression of most genes induced after 6 h into development, including the gene identified by Tn5 lac insertion Ω4400. To determine if FruA is a direct regulator of Ω4400 transcription, a combination of in vivo and in vitro experiments was performed. Ω4400 expression was abolished in a fruA mutant. The DNA-binding domain of FruA bound specifically to DNA upstream of the promoter −35 region in vitro. Mutations between bp −86 and −77 greatly reduced binding. One of these mutations had been shown previously to reduce Ω4400 expression in vivo and make it independent of C-signaling. For the first time, chromatin immunoprecipitation (ChIP) experiments were performed on M. xanthus. The ChIP experiments demonstrated that FruA is associated with the Ω4400 promoter region late in development, even in the absence of C-signaling. Based on these results, we propose that FruA directly activates Ω4400 transcription to a moderate level prior to C-signaling and, in response to C-signaling, binds near bp −80 and activates transcription to a higher level. Also, the highly localized effects of mutations between bp −86 and −77 on DNA binding in vitro, together with recently published footprints, allow us to predict a consensus binding site of GTCG/CGA/G for the FruA DNA-binding domain.


2001 ◽  
Vol 183 (2) ◽  
pp. 536-544 ◽  
Author(s):  
Philip E. Boucher ◽  
Mei-Shin Yang ◽  
Deanna M. Schmidt ◽  
Scott Stibitz

ABSTRACT The BvgA-BvgS two-component signal transduction system regulates expression of virulence factors in Bordetella pertussis. The BvgA response regulator activates transcription by binding to target promoters, which include those for the genes encoding filamentous hemagglutinin (fha) and pertussis toxin (ptx). We have previously shown that at both promoters the phosphorylated form of BvgA binds multiple high- and low-affinity sites. Specifically, at the fha promoter, we proposed that there may be high- and a low-affinity binding sites for the BvgA dimer. In our present investigation, we used DNA binding analyses and in vitro and in vivo assays of promoters with substitutions and deletions to support and extend this hypothesis. Our observations indicate that (i) binding of BvgA∼P to a primary (high-affinity) site and a secondary binding region (lower affinity) is cooperative, (ii) although both the primary binding site and the secondary binding region are required for full activity of the wild-type (undeleted) promoter, deletion of two helical turns within the secondary binding region can produce a fully active or hyperactive promoter, and (iii) BvgA binding to the secondary binding region shows limited DNA sequence specificity.


2003 ◽  
Vol 71 (12) ◽  
pp. 6962-6970 ◽  
Author(s):  
Thomas C. Zahrt ◽  
Christopher Wozniak ◽  
Denise Jones ◽  
Andrea Trevett

ABSTRACT The mechanisms utilized by Mycobacterium tuberculosis to establish, maintain, or reactivate from latent infection in the host are largely unknown but likely include genes that mediate adaptation to conditions encountered during persistence. Previously, a two-component signal transduction system, mprAB, was found to be required in M. tuberculosis for establishment and maintenance of persistent infection in a tissue- and stage-specific fashion. To begin to characterize the role of this system in M. tuberculosis physiology and virulence, a functional analysis of the mprA and mprB gene products was initiated. Here, evidence is presented demonstrating that sensor kinase MprB and response regulator MprA function as an intact signal-transducing pair in vitro and in vivo. Sensor kinase MprB can be autophosphorylated, can donate phosphate to MprA, and can act as a phospho-MprA phosphatase in vitro. Correspondingly, response regulator MprA can accept phosphate from MprB or from small phosphodonors including acetyl phosphate. Mutagenesis of residues His249 in MprB and Asp48 in MprA abolished the ability of these proteins to be phosphorylated in vitro. Introduction of these alleles into Mycobacterium bovis BCGattenuated virulence in macrophages in vivo. Together, these results support a role for the mprAB two-component system in M. tuberculosis physiology and pathogenesis. Characterization of two-component signal transduction systems will enhance our understanding of processes regulated by M. tuberculosis during acute and/or persistent infection in the host.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


1994 ◽  
Vol 14 (5) ◽  
pp. 3484-3493
Author(s):  
T J Wu ◽  
G Monokian ◽  
D F Mark ◽  
C R Wobbe

VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


Reproduction ◽  
2012 ◽  
Vol 143 (2) ◽  
pp. 195-201 ◽  
Author(s):  
C Joy McIntosh ◽  
Steve Lawrence ◽  
Peter Smith ◽  
Jennifer L Juengel ◽  
Kenneth P McNatty

The transforming growth factor β (TGFB) superfamily proteins bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), are essential for mammalian fertility. Recent in vitro evidence suggests that the proregions of mouse BMP15 and GDF9 interact with their mature proteins after secretion. In this study, we have actively immunized mice against these proregions to test the potential in vivo roles on fertility. Mice were immunized with either N- or C-terminus proregion peptides of BMP15 or GDF9, or a full-length GDF9 proregion protein, each conjugated to keyhole limpet hemocyanin (KLH). For each immunization group, ovaries were collected from ten mice for histology after immunization, while a further 20 mice were allowed to breed and litter sizes were counted. To link the ovulation and fertility data of these two experimental end points, mice were joined during the time period identified by histology as being the ovulatory period resulting in to the corpora lutea (CL) counted. Antibody titers in sera increased throughout the study period, with no cross-reactivity observed between BMP15 and GDF9 sera and antigens. Compared with KLH controls, mice immunized with the N-terminus BMP15 proregion peptide had ovaries with fewer CL (P<0.05) and produced smaller litters (P<0.05). In contrast, mice immunized with the full-length GDF9 proregion not only had more CL (P<0.01) but also had significantly smaller litter sizes (P<0.01). None of the treatments affected the number of antral follicles per ovary. These findings are consistent with the hypothesis that the proregions of BMP15 and GDF9, after secretion by the oocyte, have physiologically important roles in regulating ovulation rate and litter size in mice.


2015 ◽  
Vol 197 (11) ◽  
pp. 1886-1892 ◽  
Author(s):  
Jennifer Tsang ◽  
Takanori Hirano ◽  
Timothy R. Hoover ◽  
Jonathan L. McMurry

ABSTRACTFlagellar biogenesis is a complex process that involves multiple checkpoints to coordinate transcription of flagellar genes with the assembly of the flagellum. InHelicobacter pylori, transcription of the genes needed in the middle stage of flagellar biogenesis is governed by RpoN and the two-component system consisting of the histidine kinase FlgS and response regulator FlgR. In response to an unknown signal, FlgS autophosphorylates and transfers the phosphate to FlgR, initiating transcription from RpoN-dependent promoters. In the present study, export apparatus protein FlhA was examined as a potential signal protein. Deletion of its N-terminal cytoplasmic sequence dramatically decreased expression of two RpoN-dependent genes,flaBandflgE. Optical biosensing demonstrated a high-affinity interaction between FlgS and a peptide consisting of residues 1 to 25 of FlhA (FlhANT). TheKD(equilibrium dissociation constant) was 21 nM and was characterized by fast-on (kon= 2.9 × 104M−1s−1) and slow-off (koff= 6.2 × 10−4s−1) kinetics. FlgS did not bind peptides consisting of smaller fragments of the FlhANTsequence. Analysis of binding to purified fragments of FlgS demonstrated that the C-terminal portion of the protein containing the kinase domain binds FlhANT. FlhANTbinding did not stimulate FlgS autophosphorylationin vitro, suggesting that FlhA facilitates interactions between FlgS and other structures required to stimulate autophosphorylation.IMPORTANCEThe high-affinity binding of FlgS to FlhA characterized in this study points to an additional role for FlhA in flagellar assembly. Beyond its necessity for type III secretion, the N-terminal cytoplasmic sequence of FlhA is required for RpoN-dependent gene expression via interaction with the C-terminal kinase domain of FlgS.


2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


Sign in / Sign up

Export Citation Format

Share Document