scholarly journals YjjG, a dUMP Phosphatase, Is Critical for Thymine Utilization by Escherichia coli K-12

2006 ◽  
Vol 189 (5) ◽  
pp. 2186-2189 ◽  
Author(s):  
Bernard Weiss

ABSTRACT Exogenous thymine must be converted to thymidine to enable a thyA (thymidylate synthase) mutant to grow. The deoxyribose in the thymidine comes from dUMP, which must first be dephosphorylated. The nucleotidase YjjG is critical for this step. A yjjG thyA mutant cannot use thymine for growth on a glucose minimal medium.

2008 ◽  
Vol 77 (3) ◽  
pp. 1155-1164 ◽  
Author(s):  
Mourad Sabri ◽  
Sébastien Houle ◽  
Charles M. Dozois

ABSTRACT Roles of the ZnuACB and ZupT transporters were assessed in Escherichia coli K-12 and uropathogenic E. coli (UPEC) CFT073. K-12 and CFT073 Δznu ΔzupT mutants demonstrated decreased 65Zn2+ uptake and growth in minimal medium. CFT073Δznu demonstrated an intermediate decrease of 65Zn2+ uptake and growth in minimal medium, whereas the CFT073ΔzupT mutant grew as well as CFT073 and exhibited a less marked decrease in 65Zn2+ uptake. CFT073 mutants grew as well as the wild type in human urine. In competitive infections in CBA/J mice, the ΔzupT mutant demonstrated no disadvantage during urinary tract infection. In contrast, the UPEC Δznu and Δznu ΔzupT strains demonstrated significantly reduced numbers in the bladders (mean 4.4- and 30-fold reductions, respectively) and kidneys (mean 41- and 48-fold reductions, respectively). In addition, in single-strain infection experiments, the Δznu and Δznu ΔzupT mutants were reduced in the kidneys (P = 0.0012 and P < 0.0001, respectively). Complementation of the CFT073 Δznu ΔzupT mutant with the znuACB genes restored growth in Zn-deficient medium and bacterial numbers in the bladder and kidneys. The loss of the zinc transport systems decreased both motility and resistance to hydrogen peroxide, which could be restored by supplementation with zinc. Overall, the results indicate that Znu and ZupT are required for growth in zinc limited-conditions, that Znu is the predominant zinc transporter, and that the loss of Znu and ZupT has a cumulative effect on fitness during UTI, which may in part be due to reduced resistance to oxidative stress and motility.


2009 ◽  
Vol 191 (8) ◽  
pp. 2776-2782 ◽  
Author(s):  
Shin Kurihara ◽  
Yuichi Tsuboi ◽  
Shinpei Oda ◽  
Hyeon Guk Kim ◽  
Hidehiko Kumagai ◽  
...  

ABSTRACT The Puu pathway is a putrescine utilization pathway involving gamma-glutamyl intermediates. The genes encoding the enzymes of the Puu pathway form a gene cluster, the puu gene cluster, and puuP is one of the genes in this cluster. In Escherichia coli, three putrescine importers, PotFGHI, PotABCD, and PotE, were discovered in the 1990s and have been studied; however, PuuP had not been discovered previously. This paper shows that PuuP is a novel putrescine importer whose kinetic parameters are equivalent to those of the polyamine importers discovered previously. A puuP + strain absorbed up to 5 mM putrescine from the medium, but a ΔpuuP strain did not. E. coli strain MA261 has been used in previous studies of polyamine transporters, but PuuP had not been identified previously. It was revealed that the puuP gene of MA261 was inactivated by a point mutation. When E. coli was grown on minimal medium supplemented with putrescine as the sole carbon or nitrogen source, only PuuP among the polyamine importers was required. puuP was expressed strongly when putrescine was added to the medium or when the puuR gene, which encodes a putative repressor, was deleted. When E. coli was grown in M9-tryptone medium, PuuP was expressed mainly in the exponential growth phase, and PotFGHI was expressed independently of the growth phase.


1967 ◽  
Vol 22 (11) ◽  
pp. 1118-1129 ◽  
Author(s):  
Peter Knolle

The appearance of fr-specific RNA components was followed in two strains of E. coli K 12 growing in supplemented minimal medium. Under these conditions the eclipse period was 25 min. and the latent period 50 minutes. Using pulses with 14C-uracil for 5 min followed by chases for 10 min, labelled RNase-resistant components appeared simultaneously with labelled material corresponding to phage RNA. The peak of the RNase-resistant components was found to sediment initially at 6 s. As replication progressed, it sedimented with increasingly higher values, reaching a maximum of 11.5 s 80 min after infection. Properties of this RNase-resistant fraction resemble those expected of partially double-stranded material as it is assumed to be present in “replicative intermediates I and II”.


2007 ◽  
Vol 7 (1) ◽  
pp. 97 ◽  
Author(s):  
Teresa M Bergholz ◽  
Lukas M Wick ◽  
Weihong Qi ◽  
James T Riordan ◽  
Lindsey M Ouellette ◽  
...  

2001 ◽  
Vol 183 (9) ◽  
pp. 2834-2841 ◽  
Author(s):  
Vaughn S. Cooper ◽  
Dominique Schneider ◽  
Michel Blot ◽  
Richard E. Lenski

ABSTRACT Twelve populations of Escherichia coli B all lostd-ribose catabolic function during 2,000 generations of evolution in glucose minimal medium. We sought to identify the population genetic processes and molecular genetic events that caused these rapid and parallel losses. Seven independent Rbs−mutants were isolated, and their competitive fitnesses were measured relative to that of their Rbs+ progenitor. These Rbs− mutants were all about 1 to 2% more fit than the progenitor. A fluctuation test revealed an unusually high rate, about 5 × 10−5 per cell generation, of mutation from Rbs+ to Rbs−, which contributed to rapid fixation. At the molecular level, the loss of ribose catabolic function involved the deletion of part or all of the ribose operon (rbs genes). The physical extent of the deletion varied between mutants, but each deletion was associated with an IS150 element located immediately upstream of therbs operon. The deletions apparently involved transposition into various locations within the rbs operon; recombination between the new IS150 copy and the one upstream of therbs operon then led to the deletion of the intervening sequence. To confirm that the beneficial fitness effect was caused by deletion of the rbs operon (and not some undetected mutation elsewhere), we used P1 transduction to restore the functionalrbs operon to two Rbs− mutants, and we constructed another Rbs− strain by gene replacement with a deletion not involving IS150. All three of these new constructs confirmed that Rbs− mutants have a competitive advantage relative to their Rbs+ counterparts in glucose minimal medium. The rapid and parallel evolutionary losses of ribose catabolic function thus involved both (i) an unusually high mutation rate, such that Rbs− mutants appeared repeatedly in all populations, and (ii) a selective advantage in glucose minimal medium that drove these mutants to fixation.


2008 ◽  
Vol 191 (1) ◽  
pp. 238-248 ◽  
Author(s):  
Sarah C. Pulvermacher ◽  
Lorraine T. Stauffer ◽  
George V. Stauffer

ABSTRACT In Escherichia coli, the gcvB gene encodes a nontranslated RNA (referred to as GcvB) that regulates OppA and DppA, two periplasmic binding proteins for the oligopeptide and dipeptide transport systems. An additional regulatory target of GcvB, sstT, was found by microarray analysis of RNA isolated from a wild-type strain and a gcvB deletion strain grown to mid-log phase in Luria-Bertani broth. The SstT protein functions to transport l-serine and l-threonine by sodium transport into the cell. Reverse transcription-PCR and translational fusions confirmed that GcvB negatively regulates sstT mRNA levels in cells grown in Luria-Bertani broth. A series of transcriptional fusions identified a region of sstT mRNA upstream of the ribosome binding site needed for negative regulation by GcvB. Analysis of the GcvB RNA identified a sequence complementary to this region of the sstT mRNA. The region of GcvB complementary to sstT mRNA is the same region of GcvB identified to regulate the dppA and oppA mRNAs. Mutations predicted to disrupt base pairing between sstT mRNA and GcvB were made in gcvB, which resulted in the identification of a small region of GcvB necessary for negative regulation of sstT-lacZ. Additionally, the RNA chaperone protein Hfq was found to be necessary for GcvB to negatively regulate sstT-lacZ in Luria-Bertani broth and glucose minimal medium supplemented with glycine. The sstT mRNA is the first target found to be regulated by GcvB in glucose minimal medium supplemented with glycine.


Author(s):  
Muriel B. Herrington ◽  
Tara J. MacRae ◽  
Dimitrios Panagopoulos ◽  
Soo-Hang Wong
Keyword(s):  

2006 ◽  
Vol 188 (18) ◽  
pp. 6622-6628 ◽  
Author(s):  
Andrew T. Anfora ◽  
Rodney A. Welch

ABSTRACTd-Serine is an amino acid present in mammalian urine that is inhibitory toEscherichia colistrains lacking a functionaldsdAgene. Counterintuitively, adsdAstrain ofE. coliclinical isolate CFT073 hypercolonizes the bladder and kidneys of mice relative to wild type during a coinfection in the murine model of urinary tract infection. We are interested in the mechanisms for uptake ofd-serine in CFT073.d-Serine entersE. coliK-12 via CycA, thed-alanine transporter andd-cycloserine sensitivity locus. CFT073cycAcan grow on minimal medium withd-serine as a sole carbon source. ThedsdXgene of thedsdCXAlocus is a likely candidate for an additionald-serine transporter based on its predicted amino acid sequence similarity to gluconate transporters. In minimal medium, CFT073dsdXcan grow ond-serine as a sole carbon source; however, CFT073dsdX cycAcannot. Additionally, CFT073dsdXA cycAis not sensitive to inhibitory concentrations ofd-serine during growth on glycerol andd-serine minimal medium.d-[14C]serine uptake experiments with CFT073dsdX cycAharboringdsdXorcycArecombinant plasmids confirm thatd-serine is able to enterE. colicells via CycA or DsdX. In whole-celld-[14C]serine uptake experiments, DsdX has an apparentKmof 58.75 μM and aVmaxof 75.96 nmol/min/mg, and CycA has an apparentKmof 82.40 μM and aVmaxof 58.90 nmol/min/mg. Onlyd-threonine marginally inhibits DsdX-mediatedd-serine transport, whereasd-alanine, glycine, andd-cycloserine inhibit CycA-mediatedd-serine transport. DsdX or CycA is sufficient to transport physiological quantities ofd-serine, but DsdX is ad-serine-specific permease.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1774
Author(s):  
Xian Ju ◽  
Xingxing Fang ◽  
Yunzhu Xiao ◽  
Bingyu Li ◽  
Ruoping Shi ◽  
...  

Small non-translated regulatory RNAs control plenty of bacterial vital activities. The small RNA GcvB has been extensively studied, indicating the multifaceted roles of GcvB beyond amino acid metabolism. However, few reported GcvB-dependent regulation in minimal medium. Here, by applying a high-resolution RNA-seq assay, we compared the transcriptomes of a wild-type Escherichia coli K-12 strain and its gcvB deletion derivative grown in minimal medium and identified putative targets responding to GcvB, including flu, a determinant gene of auto-aggregation. The following molecular studies and the enhanced auto-aggregation ability of the gcvB knockout strain further substantiated the induced expression of these genes. Intriguingly, the reduced expression of OxyR (the oxidative stress regulator) in the gcvB knockout strain was identified to account for the increased expression of flu. Additionally, GcvB was characterized to up-regulate the expression of OxyR at the translational level. Accordingly, compared to the wild type, the GcvB deletion strain was more sensitive to oxidative stress and lost some its ability to eliminate endogenous reactive oxygen species. Taken together, we reveal that GcvB regulates oxidative stress response by up-regulating OxyR expression. Our findings provide an insight into the diversity of GcvB regulation and add an additional layer to the regulation of OxyR.


Sign in / Sign up

Export Citation Format

Share Document