scholarly journals Novel Genetic Polymorphisms That Further Delineate the Phylogeny of the Mycobacterium tuberculosis Complex

2006 ◽  
Vol 188 (12) ◽  
pp. 4271-4287 ◽  
Author(s):  
Richard C. Huard ◽  
Michel Fabre ◽  
Petra de Haas ◽  
Luiz Claudio Oliveira Lazzarini ◽  
Dick van Soolingen ◽  
...  

ABSTRACT In a previous report, we described a PCR protocol for the differentiation of the various species of the Mycobacterium tuberculosis complex (MTC) on the basis of genomic deletions (R. C. Huard, L. C. de Oliveira Lazzarini, W. R. Butler, D. van Soolingen, and J. L. Ho, J. Clin. Microbiol. 41:1637-1650, 2003). That report also provided a broad cross-comparison of several previously identified, phylogenetically relevant, long-sequence and single-nucleotide polymorphisms (LSPs and SNPs, respectively). In the present companion report, we expand upon the previous work (i) by continuing the evaluation of known MTC phylogenetic markers in a larger collection of tubercle bacilli (n = 125), (ii) by evaluating additional recently reported MTC species-specific and interspecific polymorphisms, and (iii) by describing the identification and distribution of a number of novel LSPs and SNPs. Notably, new genomic deletions were found in various Mycobacterium tuberculosis strains, new species-specific SNPs were identified for “Mycobacterium canettii,” Mycobacterium microti, and Mycobacterium pinnipedii, and, for the first time, intraspecific single-nucleotide DNA differences were discovered for the dassie bacillus, the oryx bacillus, and the two Mycobacterium africanum subtype I variants. Surprisingly, coincident polymorphisms linked one M. africanum subtype I genotype with the dassie bacillus and M. microti with M. pinnipedii, thereby suggesting closer evolutionary ties within each pair of species than had been previously thought. Overall, the presented data add to the genetic definitions of several MTC organisms as well as fine-tune current models for the evolutionary history of the MTC.

2006 ◽  
Vol 188 (23) ◽  
pp. 8169-8177 ◽  
Author(s):  
Xiaoming Liu ◽  
Michaela M. Gutacker ◽  
James M. Musser ◽  
Yun-Xin Fu

ABSTRACT Due to its mostly isolated living environment, Mycobacterium tuberculosis is generally believed to be highly clonal, and thus recombination between different strains must be rare and is not critical for the survival of the species. To investigate the roles recombination could have possibly played in the evolution of M. tuberculosis, an analysis was conducted on previously determined genotypes of 36 synonymous single nucleotide polymorphisms (SNPs) in 3,320 M. tuberculosis isolates. The results confirmed the predominant clonal structure of the M. tuberculosis population. However, recombination between different strains was also suggested. To further resolve the issue, 175 intergenic SNPs and 234 synonymous SNPs were genotyped in 37 selected representative strains. A clear mosaic polymorphic pattern ahead of the MT0105 locus encoding a PPE (Pro-Pro-Glu) protein was obtained, which is most likely a result of recombination hot spot. Given that PPE proteins are thought to be critical in host-pathogen interactions, we hypothesize that recombination has been influential in the history of M. tuberculosis and possibly a major contributor to the diversity observed ahead of the MT0105 locus.


2014 ◽  
Vol 281 (1781) ◽  
pp. 20133236 ◽  
Author(s):  
Romy Müller ◽  
Charlotte A. Roberts ◽  
Terence A. Brown

The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 967-978 ◽  
Author(s):  
C. Viana-Niero ◽  
P. E. de Haas ◽  
D. van Soolingen ◽  
S. C. Leão

The Mycobacterium tuberculosis genome contains four highly related genes which present significant similarity to Pseudomonas aeruginosa genes encoding phospholipase C enzymes. Three of these genes, plcA, plcB and plcC, are organized in tandem (locus plcABC). The fourth gene, plcD, is located in a different region. This study investigates variations in plcABC and plcD genes in clinical isolates of M. tuberculosis, Mycobacterium africanum and ‘Mycobacterium canettii’. Genetic polymorphisms were examined by PCR, Southern blot hybridization, sequence analysis and RT-PCR. Seven M. tuberculosis isolates contain insertions of IS6110 elements within plcA, plcC or plcD. In 19 of 25 M. tuberculosis isolates examined, genomic deletions were identified, resulting in loss of parts of genes or complete genes from the plcABC and/or plcD loci. Partial plcD deletion was observed in one M. africanum isolate. In each case, deletions were associated with the presence of a copy of the IS6110 element and in all occurrences IS6110 was transposed in the same orientation. A mechanism of deletion resulting from homologous recombination of two copies of IS6110 was recognized in a group of genetically related M. tuberculosis isolates. Five M. tuberculosis isolates presented major polymorphisms in the plcABC and plcD regions, along with loss of expression competence that affected all four plc genes. Phospholipase C is a well-known bacterial virulence factor. The precise role of phospholipase C in the pathogenicity of M. tuberculosis is unknown, but considering the potential importance that the plc genes may have in the virulence of the tubercle bacillus, the study of isolates cultured from patients with active tuberculosis bearing genetic variations affecting these genes may provide insights into the significance of phospholipase C enzymes for tuberculosis pathogenicity.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 808
Author(s):  
Laura Pérez-Lago ◽  
Teresa Aldámiz-Echevarría ◽  
Rita García-Martínez ◽  
Leire Pérez-Latorre ◽  
Marta Herranz ◽  
...  

A successful Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, B.1.1.7, has recently been reported in the UK, causing global alarm. Most likely, the new variant emerged in a persistently infected patient, justifying a special focus on these cases. Our aim in this study was to explore certain clinical profiles involving severe immunosuppression that may help explain the prolonged persistence of viable viruses. We present three severely immunosuppressed cases (A, B, and C) with a history of lymphoma and prolonged SARS-CoV-2 shedding (2, 4, and 6 months), two of whom finally died. Whole-genome sequencing of 9 and 10 specimens from Cases A and B revealed extensive within-patient acquisition of diversity, 12 and 28 new single nucleotide polymorphisms, respectively, which suggests ongoing SARS-CoV-2 replication. This diversity was not observed for Case C after analysing 5 sequential nasopharyngeal specimens and one plasma specimen, and was only observed in one bronchoaspirate specimen, although viral viability was still considered based on constant low Ct values throughout the disease and recovery of the virus in cell cultures. The acquired viral diversity in Cases A and B followed different dynamics. For Case A, new single nucleotide polymorphisms were quickly fixed (13–15 days) after emerging as minority variants, while for Case B, higher diversity was observed at a slower emergence: fixation pace (1–2 months). Slower SARS-CoV-2 evolutionary pace was observed for Case A following the administration of hyperimmune plasma. This work adds knowledge on SARS-CoV-2 prolonged shedding in severely immunocompromised patients and demonstrates viral viability, noteworthy acquired intra-patient diversity, and different SARS-CoV-2 evolutionary dynamics in persistent cases.


2006 ◽  
Vol 95 (02) ◽  
pp. 373-379 ◽  
Author(s):  
Edward Tuddenham ◽  
Cathy Turner ◽  
Ben Lavender ◽  
Stuart Lavery ◽  
Katerina Michaelides

SummaryHaemophilia A is an X-linked, recessive, inherited bleeding disorder which affects 1 in 5000 males born worldwide. It is caused by mutations in the FactorVIII (F8) gene on chromosome Xq28. We describe for the first time two mutation specific, single cell protocols for pre-implantation genetic diagnosis (PGD) of haemophilia A that enable the selection of both male and female unaffected embryos. This approach offers an alternative to sexing, frequently used for X-linked disorders, that results in the discarding of all male embryos including the 50% that would have been normal. Two families witha history of severe haemophilia A requested carrier diagnosis and subsequently proceeded to PGD. The mutation in family1 isa single nucleotide substitution c. 5953C>T, R1966X in exon 18 and in family 2, c. 5122C>T, R1689C in exon 14 of the F8 gene. Amplification efficiency was compared between distilled water and SDS/proteinase K cell lysis (98.0%, 96/98 and 80%, 112/140 respectively) using 238 single lymphocytes. Blastomeres from spare IVF cleavage-stage embryos donated for research showed amplification efficiencies of 83.3% (45/54) for the R1966X and 92.9% (13/14) for the R1689C mutations. The rate of allele dropout (ADO) on heterozygous lymphocytes was 1.1% (1/93) for R1966X and 5.94% (6/101) for R1689C mutations. A single PGD treatment cycle for family1 resulted in two embryos for transfer but these failed to implant. However, with family 2, two embryos were transferred to the uterus on day 4 resulting in a successful singleton pregnancy and subsequent live birth of a normal non-carrier female.


2018 ◽  
Vol 46 (4) ◽  
pp. 937-944 ◽  
Author(s):  
Robert Rauscher ◽  
Zoya Ignatova

Ribosomes translate mRNAs with non-uniform speed. Translation velocity patterns are a conserved feature of mRNA and have evolved to fine-tune protein folding, expression and function. Synonymous single-nucleotide polymorphisms (sSNPs) that alter programmed translational speed affect expression and function of the encoded protein. Synergistic advances in next-generation sequencing have led to the identification of sSNPs associated with disease penetrance. Here, we draw on studies with disease-related proteins to enhance our understanding of mechanistic contributions of sSNPs to functional alterations of the encoded protein. We emphasize the importance of identification of sSNPs along with disease-causing mutations to understand genotype–phenotype relationships.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Marva Seifert ◽  
Edmund Capparelli ◽  
Donald G. Catanzaro ◽  
Timothy C. Rodwell

ABSTRACT Clinical phenotypic fluoroquinolone susceptibility testing of Mycobacterium tuberculosis is currently based on M. tuberculosis growth at a single critical concentration, which provides limited information for a nuanced clinical response. We propose using specific resistance-conferring M. tuberculosis mutations in gyrA together with population pharmacokinetic and pharmacodynamic modeling as a novel tool to better inform fluoroquinolone treatment decisions. We sequenced the gyrA resistance-determining region of 138 clinical M. tuberculosis isolates collected from India, Moldova, Philippines, and South Africa and then determined each strain’s MIC against ofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Strains with specific gyrA single-nucleotide polymorphisms (SNPs) were grouped into high or low drug-specific resistance categories based on their empirically measured MICs. Published population pharmacokinetic models were then used to explore the pharmacokinetics and pharmacodynamics of each fluoroquinolone relative to the empirical MIC distribution for each resistance category to make predictions about the likelihood of patients achieving defined therapeutic targets. In patients infected with M. tuberculosis isolates containing SNPs associated with a fluoroquinolone-specific low-level increase in MIC, models suggest increased fluoroquinolone dosing improved the probability of achieving therapeutic targets for gatifloxacin and moxifloxacin but not for levofloxacin and ofloxacin. In contrast, among patients with isolates harboring SNPs associated with a high-level increase in MIC, increased dosing of levofloxacin, moxifloxacin, gatifloxacin, or ofloxacin did not meaningfully improve the probability of therapeutic target attainment. We demonstrated that quantifiable fluoroquinolone drug resistance phenotypes could be predicted from rapidly detectable gyrA SNPs and used to support dosing decisions based on the likelihood of patients reaching therapeutic targets. Our findings provide further supporting evidence for the moxifloxacin clinical breakpoint recently established by the World Health Organization.


2019 ◽  
Vol 125 (3) ◽  
pp. 495-507 ◽  
Author(s):  
Francisco Balao ◽  
María Teresa Lorenzo ◽  
José Manuel Sánchez-Robles ◽  
Ovidiu Paun ◽  
Juan Luis García-Castaño ◽  
...  

Abstract Background and Aims Inferring the evolutionary relationships of species and their boundaries is critical in order to understand patterns of diversification and their historical drivers. Despite Abies (Pinaceae) being the second most diverse group of conifers, the evolutionary history of Circum-Mediterranean firs (CMFs) remains under debate. Methods We used restriction site-associated DNA sequencing (RAD-seq) on all proposed CMF taxa to investigate their phylogenetic relationships and taxonomic status. Key Results Based on thousands of genome-wide single nucleotide polymorphisms (SNPs), we present here the first formal test of species delimitation, and the first fully resolved, complete species tree for CMFs. We discovered that all previously recognized taxa in the Mediterranean should be treated as independent species, with the exception of Abies tazaotana and Abies marocana. An unexpectedly early pulse of speciation in the Oligocene–Miocene boundary is here documented for the group, pre-dating previous hypotheses by millions of years, revealing a complex evolutionary history encompassing both ancient and recent gene flow between distant lineages. Conclusions Our phylogenomic results contribute to shed light on conifers’ diversification. Our efforts to resolve the CMF phylogenetic relationships help refine their taxonomy and our knowledge of their evolution.


Sign in / Sign up

Export Citation Format

Share Document