scholarly journals Expression of the Gonococcal Global Regulatory Protein Fur and Genes Encompassing the Fur and Iron Regulon during In Vitro and In Vivo Infection in Women

2008 ◽  
Vol 190 (9) ◽  
pp. 3129-3139 ◽  
Author(s):  
Sarika Agarwal ◽  
Shite Sebastian ◽  
Borys Szmigielski ◽  
Peter A. Rice ◽  
Caroline A. Genco

ABSTRACT The ferric uptake regulatory protein, Fur, functions as a global regulatory protein of gene transcription in the mucosal pathogen Neisseria gonorrhoeae. We have shown previously that several N. gonorrhoeae Fur-repressed genes are expressed in vivo during mucosal gonococcal infection in men, which suggests that this organism infects in an iron-limited environment and that Fur is expressed under these conditions. In this study we have demonstrated expression of the gonococcal fur gene in vitro, in human cervical epithelial cells, and in specimens from female subjects with uncomplicated gonococcal infection. In vitro studies confirmed that the expression of the gonococcal fur gene was repressed during growth under iron-replete growth conditions but that a basal level of the protein was maintained. Using GFP transcriptional fusions constructed from specific Fur binding sequences within the fur promoter/operator region, we determined that this operator region was functional during N. gonorrhoeae infection of cervical epithelial cells. Furthermore, reverse transcription-PCR analysis, as well as microarray analysis, using a custom Neisseria Fur and iron regulon microarray revealed that several Fur- and iron-regulated genes were expressed during N. gonorrhoeae infection of cervical epithelial cells. Microarray analysis of specimens obtained from female subjects with uncomplicated gonococcal infection corroborated our in vitro findings and point toward a key role of gonococcal Fur- and iron-regulated genes in gonococcal disease.

2004 ◽  
Vol 186 (10) ◽  
pp. 3143-3152 ◽  
Author(s):  
Anne-Soisig Steunou ◽  
Soufian Ouchane ◽  
Françoise Reiss-Husson ◽  
Chantal Astier

ABSTRACT The facultative phototrophic nonsulfur bacterium Rubrivivax gelatinosus exhibits several differences from other species of purple bacteria in the organization of its photosynthetic genes. In particular, the puc operon contains only the pucB and pucA genes encoding the β and α polypeptides of the light-harvesting 2 (LH2) complex. Downstream of the pucBA operon is the pucC gene in the opposite transcriptional orientation. The transcription of pucBA and pucC has been studied. No pucC transcript was detected either by Northern blotting or by reverse transcription-PCR analysis. The initiation site of pucBA transcription was determined by primer extension, and Northern blot analysis revealed the presence of two transcripts of 0.8 and 0.65 kb. The half-lives of both transcripts are longer in cells grown semiaerobically than in photosynthetically grown cells, and the small transcript is the less stable. It was reported that the α polypeptide, encoded by the pucA gene, presents a C-terminal extension which is not essential for LH2 function in vitro. The biological role of this alanine- and proline-rich C-terminal extension in vivo has been investigated. Two mutants with C-terminal deletions of 13 and 18 residues have been constructed. Both present the two pucBA transcripts, while their phenotypes are, respectively, LH2+ and LH2−, suggesting that a minimal length of the C-terminal extension is required for LH2 biogenesis. Another important factor involved in the LH2 biogenesis is the PucC protein. To gain insight into the function of this protein in R. gelatinosus, we constructed and characterized a PucC mutant. The mutant is devoid of LH2 complex under semiaerobiosis but still produces a small amount of these antennae under photosynthetic growth conditions. This conditional phenotype suggests the involvement of another factor in LH2 biogenesis.


2005 ◽  
Vol 73 (7) ◽  
pp. 4281-4287 ◽  
Author(s):  
Sarika Agarwal ◽  
Carol A. King ◽  
Ellen K. Klein ◽  
David E. Soper ◽  
Peter A. Rice ◽  
...  

ABSTRACT Iron is limiting in the human host, and bacterial pathogens respond to this environment by regulating gene expression through the ferric uptake regulator protein (Fur). In vitro studies have demonstrated that Neisseria gonorrhoeae controls the expression of several critical genes through an iron- and Fur-mediated mechanism. While most in vitro experiments are designed to determine the response of N. gonorrhoeae to an exogenous iron concentration of zero, these organisms are unlikely to be exposed to such severe limitations of iron in vivo. To determine if N. gonorrhoeae expresses iron- and Fur-regulated genes in vivo during uncomplicated gonococcal infection, we examined gene expression profiles of specimens obtained from male subjects with urethral infections. RNA was isolated from urethral swab specimens and used as a template to amplify, by reverse transcriptase PCR (RT-PCR), gonococcal genes known to be regulated by iron and Fur (tbpA, tbpB, and fur). The constitutively expressed gonococcal rmp gene was used as a positive control. RT-PCR analysis indicated that gonorrhea-positive specimens where rmp expression was seen were also 93% (51/55) fbpA positive, 87% (48/55) tbpA positive, and 86% (14 of 16 tested) tbpB positive. In addition, we detected a fur transcript in 79% (37 of 47 tested) of positive specimens. We also measured increases in levels of immunoglobulin G antibody against TbpA (91%) and TbpB (73%) antigens in sera from infected male subjects compared to those in uninfected controls. A positive trend between tbpA gene expression and TbpA antibody levels in sera indicated a relationship between levels of gene expression and immune response in male subjects infected with gonorrhea for the first time. These results indicate that gonococcal iron- and Fur-regulated tbpA and tbpB genes are expressed in gonococcal infection and that male subjects with mucosal gonococcal infections exhibit antibodies to these proteins.


2002 ◽  
Vol 184 (24) ◽  
pp. 6777-6785 ◽  
Author(s):  
Francisca Reyes-Ramirez ◽  
Richard Little ◽  
Ray Dixon

ABSTRACT The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymerase interaction. To analyze the mechanism of inhibition in greater detail, we isolated NifA mutants which are resistant to the inhibitory action of NifL. Mutations in both the amino-terminal GAF domain and the catalytic AAA+ domain of NifA were isolated. Several mutants blocked inhibition by NifL in response to both nitrogen and redox status, whereas some of the mutant NifA proteins were apparently able to discriminate between the forms of NifL present under different environmental conditions. One mutant protein, NifA-Y254N, was resistant to NifL under conditions of anaerobic nitrogen excess but was relatively sensitive to NifL under aerobic growth conditions. The properties of the purified mutant protein in vitro were consistent with the in vivo phenotype and indicate that NifA-Y254N is not responsive to the nitrogen signal conveyed by the interaction of NifL with A. vinelandii GlnK but is responsive to the oxidized form of NifL when ADP is present. Our observations suggest that different conformers of NifL may be generated in response to discrete signal transduction events and that both the GAF and AAA+ domains of NifA are involved in the response to NifL.


2005 ◽  
Vol 110 (3-4) ◽  
pp. 255-263 ◽  
Author(s):  
E MELNIKOW ◽  
S DORNAN ◽  
C SARGENT ◽  
M DUSZENKO ◽  
G EVANS ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Xi-Qiu Xu ◽  
Biao Zhang ◽  
Le Guo ◽  
Yu Liu ◽  
Feng-Zhen Meng ◽  
...  

The female reproductive tract (FRT) is a major site of HIV sexual transmission. As the outermost layer of cells in the FRT, the human cervical epithelial cells (HCEs) have direct contact with HIV or infected cells. Our early work showed that supernatant (SN) from TLR3-activated HCEs contain the antiviral factors that could potently inhibit HIV replication in macrophages. However, it remains to be determined how HCEs transport the anti-HIV factors to macrophages. This follow-up study examined the role of exosomes in HCE-mediated anti-HIV activity. We found that TLR3 activation of HCEs resulted in the release of exosomes that contained multiple IFN-stimulated genes (ISGs: <i>ISG56</i>, <i>OAS1</i>, <i>MxA,</i> and <i>Mx2</i>) and the HIV restriction microRNAs (miR-28, miR-29 family members, miR-125b, miR-150, miR-382, miR-223, miR-20a, and miR-198). The depletion of exosomes from SN of TLR3-activated HCEs diminished HCE-mediated anti-HIV activity in macrophages, indicating that HCE-derived exosomes are responsible for transporting the antiviral molecules to macrophages. These in vitro findings suggest a novel antiviral mechanism by which HCEs participate in the FRT innate immunity against HIV infection. Further in vivo studies are necessary in order to develop an exosome-based delivery system for prevention and treatment of HIV infection through sexual transmission.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document