scholarly journals Biofilms Formed by Nontypeable Haemophilus influenzae In Vivo Contain both Double-Stranded DNA and Type IV Pilin Protein

2007 ◽  
Vol 189 (10) ◽  
pp. 3868-3875 ◽  
Author(s):  
Joseph A. Jurcisek ◽  
Lauren O. Bakaletz

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) strains are members of the normal human nasopharyngeal flora, as well as frequent opportunistic pathogens of both the upper and lower respiratory tracts. Recently, it has been shown that NTHI can form biofilms both in vitro and in vivo. NTHI strains within in vitro-formed biofilms differentially express both epitopes of lipooligosaccharide (LOS) and the outer membrane proteins P2, P5, and P6, whereas those generated either in a 96-well plate assay in vitro or in a mammalian host have been shown to incorporate a specific glycoform of sialylated LOS within the biofilm matrix. While DNA has been identified as a key component of the biofilm matrix formed in vitro by several bacterial pathogens, here we demonstrate for the first time that in addition to sialylated LOS, the biofilm formed by NTHI in vivo contains both type IV pilin protein and a significant amount of double-stranded DNA. The DNA appeared to be arranged in a dense interlaced meshwork of fine strands as well as in individual thicker “ropes” that span water channels, suggesting that DNA could be imparting structural stability to the biofilm produced by NTHI in vivo. The presence of type IV pilin protein both appearing as small aggregates within the biofilm matrix and tracking along DNA strands supports our observations which showed that type IV pili are expressed by NTHI during experimental otitis media when these bacteria form a biofilm in the middle ear space.

2005 ◽  
Vol 73 (6) ◽  
pp. 3210-3218 ◽  
Author(s):  
Joseph Jurcisek ◽  
Laura Greiner ◽  
Hiroshi Watanabe ◽  
Anthony Zaleski ◽  
Michael A. Apicella ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) is an important pathogen in respiratory tract infections, including otitis media (OM). NTHI forms biofilms in vitro as well as in the chinchilla middle ear, suggesting that biofilm formation in vivo might play an important role in the pathogenesis and chronicity of OM. We've previously shown that SiaA, SiaB, and WecA are involved in biofilm production by NTHI in vitro. To investigate whether these gene products were also involved in biofilm production in vivo, NTHI strain 2019 and five isogenic mutants with deletions in genes involved in carbohydrate biosynthesis were inoculated into the middle ears of chinchillas. The wild-type strain formed a large, well-organized, and viable biofilm; however, the wecA, lsgB, siaA, pgm, and siaB mutants were either unable to form biofilms or formed biofilms of markedly reduced mass, organization, and viability. Despite their compromised ability to form a biofilm in vivo, wecA, lsgB, and siaA mutants survived in the chinchilla, inducing culture-positive middle ear effusions, whereas pgm and siaB mutants were extremely sensitive to the bactericidal activity of chinchilla serum and thus did not survive. Lectin analysis indicated that sialic acid was an important component of the NTHI 2019 biofilm produced in vivo. Our data suggested that genes involved in carbohydrate biosynthesis and assembly play an important role in the ability of NTHI to form a biofilm in vivo. Collectively, we found that when modeled in a mammalian host, whereas biofilm formation was not essential for survivability of NTHI in vivo, lipooligosaccharide sialylation was indispensable.


2007 ◽  
Vol 56 (12) ◽  
pp. 1600-1607 ◽  
Author(s):  
Analía Lima ◽  
Pablo Zunino ◽  
Bruno D'Alessandro ◽  
Claudia Piccini

Proteus mirabilis, a common cause of urinary tract infections, expresses iron-regulated outer-membrane proteins (OMPs) in response to iron restriction. It has been suggested that a 64 kDa OMP is involved in haemoprotein uptake and that this might have a role in pathogenesis. In order to confirm this hypothesis, this study generated a P. mirabilis mutant strain (P7) that did not express the 64 kDa OMP, by insertion of the TnphoA transposon. The nucleotide sequence of the interrupted gene revealed that it corresponded to a haemin receptor precursor. Moreover, in vitro growth assays showed that the mutant was unable to grow using haemoglobin and haemin as unique iron sources. The authors also carried out in vivo growth and infectivity assays and demonstrated that P7 was not able to survive in an in vivo model and was less efficient than wild-type strain Pr 6515 in colonizing the urinary tract. These results confirmed that the P. mirabilis 64 kDa iron-regulated OMP is a haem receptor that has an important role for survival and multiplication of these bacteria in the mammalian host and in the development of urinary tract infection.


2007 ◽  
Vol 75 (6) ◽  
pp. 3027-3032 ◽  
Author(s):  
Paula J. Fernandes ◽  
Qin Guo ◽  
David M. Waag ◽  
Michael S. Donnenberg

ABSTRACT Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.


2013 ◽  
Vol 62 (11) ◽  
pp. 1649-1656 ◽  
Author(s):  
Jeni Vuong ◽  
Xin Wang ◽  
Jordan M. Theodore ◽  
Jennifer Whitmon ◽  
Patricia Gomez de Leon ◽  
...  

High molecular weight (Hmw) proteins 1 and 2, type IV pilin protein (PilA), outer-membrane protein P5 (OmpP5), Haemophilus protein D (Hpd) and Haemophilus adhesive protein (Hap) are surface proteins involved in the adherence of non-typeable Haemophilus influenzae. One hundred clinical isolates were evaluated for the presence of the genes encoding these proteins by PCR and for their adherence capacity (AC) to Detroit 562 nasopharyngeal cells (D562). The majority of isolates were from blood (77/100); other sites were also represented. Confluent D562 monolayers (1.2×105 cells per well) were inoculated with standardized minimal infective doses (m.o.i.) of 102, 103 or 104 c.f.u. per well. The AC was categorized as low (<10 %) or high (≥10 %) depending on the percentage of c.f.u. adhering per well. All the isolates evaluated showed adherence: 69/100 (69 %) demonstrated high adherence, while 31/100 (31 %) showed low adherence. Of all the genes evaluated, hmw1A and/or hmw2A were detected in 69/100 (69 %) of isolates. The presence of hmw1A and/or hmw2A was associated with increased adherence to D562 cells (P≤0.001). Dot immunoblots were performed to detect protein expression using mAbs 3D6, AD6 and 10C5. Among the high-adherence isolates (n = 69), 72 % reacted with 3D6 and 21 % with 10C5. Our data indicate that the absence of Hmw1 and/or Hmw2 was associated with decreased adherence to D562 cells.


1998 ◽  
Vol 62 (2) ◽  
pp. 294-308 ◽  
Author(s):  
A. Ruth Foxwell ◽  
Jennelle M. Kyd ◽  
Allan W. Cripps

SUMMARY In this paper, we describe the ability of nontypeable Haemophilus influenzae (NTHi) to coexist with the human host and the devastating results associated with disruption of the delicate state of balanced pathogenesis, resulting in both acute and chronic respiratory tract infections. It has been seen that the strains of NTHi causing disease show a marked genetic and phenotypic diversity but that changes in the lipooligosaccharide (LOS) and protein size and antigenicity in chronically infected individuals indicate that individual strains of NTHi can remain and adapt themselves to avoid expulsion from their infective niche. The lack of reliance of NTHi on a single mechanism of attachment and its ability to interact with the host with rapid responses to its environment confirmed the success of this organism as both a colonizer and a pathogen. In vitro experiments on cell and organ cultures, combined with otitis media and pulmonary models in chinchillas, rats, and mice, have allowed investigations into individual interactions between NTHi and the mammalian host. The host-organism interaction appears to be a two-way process, with NTHi using cell surface structures to directly interact with the mammalian host and using secreted proteins and LOS to change the mammalian host in order to pave the way for colonization and invasion. Many experiments have also noted that immune system evasion through antigenic variation, secretion of enzymes and epithelial cell invasion allowed NTHi to survive for longer periods despite a specific immune response being mounted to infection. Several outer membrane proteins and LOS derivatives are discussed in relation to their efficacy in preventing pulmonary infections and otitis media in animals. General host responses with respect to age, genetic makeup, and vaccine delivery routes are considered, and a mucosal vaccine strategy is suggested.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii13-ii13
Author(s):  
Wangxian Gu ◽  
Guoqing Wan ◽  
Yanjun Zheng ◽  
Xintong Yang ◽  
Peng Zhang ◽  
...  

Abstract Diacylglycerol kinase (DGK) is a lipid kinase that catalyzes the phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA), which uses ATP as a phosphate donor. Diacylglycerol kinases ζ(DGKζ) is characterized as specific type IV due to its myristoylated alanine-rich C-kinase substrate (MARCKS), ankyrin, and PDZ binding domain. Similar to other DGKs, DGKζ is also reported to be abnormally expressed in human colorectal cancer cells, and it is indispensable for the proliferation of cancer cells. However, its implications in human glioblastoma (GBM) is largely unknown. Both the mRNA and protein levels of DGKζ were significantly higher in GBM tissues than in precancerous lesions. Knockdown of DGKζ inhibited GBM cell proliferation, cell cycle and promoted apoptosis of GBM cells. Moreover, down-regulation of DGKζ markedly reduced in vitro colony formation and in vivo tumorigenic capability. Furthermore, we confirmed that DGKζ was the downstream target of miR-34a. The expression level of DGKζ was negatively correlated with miR-34a in GBM tissues. Overexpression of DGKζ reversed the tumor suppressive roles of miR-34a in GBM cells. Taken together, DGKζ can act as a potential prognostic biomarker for GBM patients and promote the growth of GBM cells was regulated by miR-34a, and it may represent a promising therapeutic target for patients with GBM.


1997 ◽  
Vol 8 (2) ◽  
pp. 175-200 ◽  
Author(s):  
H.F. Jenkinson ◽  
RJ Lamont

Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.


1981 ◽  
Vol 89 (2) ◽  
pp. 276-283 ◽  
Author(s):  
P Ekblom ◽  
E Lehtonen ◽  
L Saxén ◽  
R Timpl

Conversion of the nephrogenic mesenchyme into epithelial tubules requires an inductive stimulus from the ureter bud. Here we show with immunofluorescence techniques that the undifferentiated mesenchyme before induction expresses uniformly type I and type III collagens. Induction both in vivo and in vitro leads to a loss of these proteins and to the appearance of basement membrane components including type IV collagen. This change correlates both spatially and temporally with the determination of the mesenchyme and precedes and morphological events. During morphogenesis, type IV collagen concentrates at the borders of the developing tubular structures where, by electron microscopy, a thin, often discontinuous basal lamina was seen to cover the first pretubular cell aggregates. Subsequently, the differentiating tubules were surrounded by a well-developed basal lamina. No loss of the interstitial collagens was seen in the metanephric mesenchyme when brought into contact with noninducing tissues or when cultured alone. Similar observations were made with nonnephrogenic mesenchyme (salivary, lung) when exposed to various heterotypic tissues known to induce tubules in the nephrogenic mesenchyme. The sequential shift in the composition of the extracellular matrix from an interstitial, mesenchymal type to a differentiated, epithelial type is so far the first detectable response of the nephrogenic mesenchyme to the tubule-inducing signal.


Sign in / Sign up

Export Citation Format

Share Document