scholarly journals Point-Counterpoint: Can Newly Developed, Rapid Immunochromatographic Antigen Detection Tests Be Reliably Used for the Laboratory Diagnosis of Influenza Virus Infections?: TABLE 1

2014 ◽  
Vol 53 (6) ◽  
pp. 1790-1796 ◽  
Author(s):  
James J. Dunn ◽  
Christine C. Ginocchio

Five years ago, the Point-Counterpoint series was launched. The initial article asked about the role of rapid immunochromatographic antigen testing in the diagnosis of influenza A virus 2009 H1N1 infection (D. F. Welch and C. C. Ginocchio, J Clin Microbiol 48:22–25, 2010,http://dx.doi.org/10.1128/JCM.02268-09). Since that article, not only have major changes been made in immunochromatographic antigen detection (IAD) testing for the influenza viruses, but there has also been rapid development of commercially available nucleic acid amplification tests (NAATs) for influenza virus detection. Further, a novel variant of influenza A, H7N9, has emerged in Asia, and H5N1 is also reemergent. In that initial article, the editor of this series, Peter Gilligan, identified two issues that required further consideration. One was how well IAD tests worked in clinical settings, especially in times of antigen drift and shift. The other was the role of future iterations of influenza NAATs and whether this testing would be available in a community hospital setting. James Dunn, who is Director of Medical Microbiology and Virology at Texas Children's Hospital, has extensive experience using IAD tests for diagnosing influenza. He will discuss the application and value of these tests in influenza diagnosis. Christine Ginocchio, who recently retired as the Senior Medical Director, Division of Infectious Disease Diagnostics, North Shore-LIJ Health System, and now is Vice President for Global Microbiology Affairs at bioMérieux, Durham, NC, wrote the initial counterpoint in this series, where she advocated the use of NAATs for influenza diagnosis. She will update us on the commercially available NAAT systems and explain what their role should be in the diagnosis of influenza infection.

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1399 ◽  
Author(s):  
Jianzhou Cui ◽  
Dhakshayini Morgan ◽  
Dao Han Cheng ◽  
Sok Lin Foo ◽  
Gracemary L. R. Yap ◽  
...  

Influenza viruses have been shown to use autophagy for their survival. However, the proteins and mechanisms involved in the autophagic process triggered by the influenza virus are unclear. Annexin-A1 (ANXA1) is an immunomodulatory protein involved in the regulation of the immune response and Influenza A virus (IAV) replication. In this study, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 (CRISPR associated protein 9) deletion of ANXA1, combined with the next-generation sequencing, we systematically analyzed the critical role of ANXA1 in IAV infection as well as the detailed processes governing IAV infection, such as macroautophagy. A number of differentially expressed genes were uniquely expressed in influenza A virus-infected A549 parental cells and A549 ∆ANXA1 cells, which were enriched in the immune system and infection-related pathways. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed the role of ANXA1 in autophagy. To validate this, the effect of mechanistic target of rapamycin (mTOR) inhibitors, starvation and influenza infection on autophagy was determined, and our results demonstrate that ANXA1 enhances autophagy induced by conventional autophagy inducers and influenza virus. These results will help us to understand the underlying mechanisms of IAV infection and provide a potential therapeutic target for restricting influenza viral replication and infection.


2009 ◽  
Vol 83 (8) ◽  
pp. 3754-3761 ◽  
Author(s):  
Li Qi ◽  
John C. Kash ◽  
Vivien G. Dugan ◽  
Ruixue Wang ◽  
Guozhong Jin ◽  
...  

ABSTRACT The 1918 influenza pandemic caused more than 40 million deaths and likely resulted from the introduction and adaptation of a novel avian-like virus. Influenza A virus hemagglutinins are important in host switching and virulence. Avian-adapted influenza virus hemagglutinins bind sialic acid receptors linked via α2-3 glycosidic bonds, while human-adapted hemagglutinins bind α2-6 receptors. Sequence analysis of 1918 isolates showed hemagglutinin genes with α2-6 or mixed α2-6/α2-3 binding. To characterize the role of the sialic acid binding specificity of the 1918 hemagglutinin, we evaluated in mice chimeric influenza viruses expressing wild-type and mutant hemagglutinin genes from avian and 1918 strains with differing receptor specificities. Viruses expressing 1918 hemagglutinin possessing either α2-6, α2-3, or α2-3/α2-6 sialic acid specificity were fatal to mice, with similar pathology and cellular tropism. Changing α2-3 to α2-6 binding specificity did not increase the lethality of an avian-adapted hemagglutinin. Thus, the 1918 hemagglutinin contains murine virulence determinants independent of receptor binding specificity.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lukasz Kedzierski ◽  
Michelle D Tate ◽  
Alan C Hsu ◽  
Tatiana B Kolesnik ◽  
Edmond M Linossi ◽  
...  

Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 47 ◽  
Author(s):  
Samantha J. Courtney ◽  
Zachary R. Stromberg ◽  
Jessica Z. Kubicek-Sutherland

Influenza virus poses a threat to global health by causing seasonal outbreaks as well as three pandemics in the 20th century. In humans, disease is primarily caused by influenza A and B viruses, while influenza C virus causes mild disease mostly in children. Influenza D is an emerging virus found in cattle and pigs. To mitigate the morbidity and mortality associated with influenza, rapid and accurate diagnostic tests need to be deployed. However, the high genetic diversity displayed by influenza viruses presents a challenge to the development of a robust diagnostic test. Nucleic acid-based tests are more accurate than rapid antigen tests for influenza and are therefore better candidates to be used in both diagnostic and surveillance applications. Here, we review various nucleic acid-based techniques that have been applied towards the detection of influenza viruses in order to evaluate their utility as both diagnostic and surveillance tools. We discuss both traditional as well as novel methods to detect influenza viruses by covering techniques that require nucleic acid amplification or direct detection of viral RNA as well as comparing advantages and limitations for each method. There has been substantial progress in the development of nucleic acid-based sensing techniques for the detection of influenza virus. However, there is still an urgent need for a rapid and reliable influenza diagnostic test that can be used at point-of-care in order to enhance responsiveness to both seasonal and pandemic influenza outbreaks.


1981 ◽  
Vol 154 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Y L Lin ◽  
B A Askonas

We tested two biological properties of a continuously growing mouse cytotoxic T cell line, L4, which is specific for influenza A virus and has been cloned and recloned many times. We previously reported that L4 cells are H-2 restricted and cross-reactive for all type A influenza viruses, whereas they do not recognize type B influenza viruses. They bear Thy-1 and Lyt-2 markers. In the present study, we show that L4 cytotoxic T cells protect mice against a lethal influenza infection on transfer to syngeneic recipients, and reduce virus titers in the lungs of mice challenged with a heterologous type A influenza virus. This provides further support for the active role of cytotoxic T cells in limiting virus replication in influenza infection. We could also demonstrate that the cloned cytotoxic T cells induce a delayed-type hypersensitivity skin reaction in the footpads of mice challenged with live or inactivated influenza virus. This reaction can be observed at 24 h, but has declined by 48 h. A clone of cells derived from L4 that has lost its cytotoxic potential and its ability to recognize infected cells did not induce a delayed-type hypersensitivity reaction in the presence of virus. Thus, cytotoxic T cells actively killing influenza virus-infected cells are able to induce a delayed-type hypersensitivity skin reaction to homologous and heterologous type A influenza viruses.


2021 ◽  
Vol 10 (Supplement_2) ◽  
pp. S7-S7
Author(s):  
Faten A Okda* ◽  
Richard Webby

Abstract Introduction Influenza viruses cause significant socioeconomic impact due to annual outbreaks and pandemic risks. Human tonsil epithelium cells (HTEC) are a heterogeneous group of actively differentiating epithelia comprising stratified squamous epithelium and reticulated crypt cells with abundant keratin expression. Hypothesis We hypothesized that the tonsils are a primary site for influenza infection and sustained viral replication. Methods and Results Primary HTEC (ScienCell Research Laboratories) were grown using an air-liquid interface and infected apically with different influenza viruses at various MOIs to measure viral growth kinetics. These cells were highly differentiated, with subpopulations of cells including ciliated, non-ciliated cells and specialized cells with secretory functions. There was a heterogenous distribution of both human-like (α2,6-linked) and avian-like (α2,3-linked) sialic acid receptors. The HTEC surface and crypts were lined with pseudostratified columnar ciliated cells possessing both α2,6-linked and α2,3-linked sialic acid receptors that were interrupted by patches of reticular epithelial cells. The HTEC epithelial cells were permissive for growth of influenza A and B viruses. A subset of cells, mostly ciliated cells, underwent apoptosis while others including non-ciliated cells remained intact despite being positive for influenza virus nucleoprotein. Interestingly, differences were seen between subtypes with colocalization of H3N2 virus and non-ciliated cells while H1N1 virus mostly associated with ciliated cells. Conclusion Our results implicated human tonsillar crypt epithelium as a site for influenza virus replication. The tonsil epithelium cell culture differentiated system provides a valuable in vitro model for studying cellular tropism, infectivity, cytokines immune response and the pathogenesis of influenza viruses for better development of effective universal vaccine and therapies against different strains of influenza viruses.


2015 ◽  
Vol 89 (12) ◽  
pp. 6218-6226 ◽  
Author(s):  
Martha I. Nelson ◽  
Jered Stratton ◽  
Mary Lea Killian ◽  
Alicia Janas-Martindale ◽  
Amy L. Vincent

ABSTRACTThe diversity of influenza A viruses in swine (swIAVs) presents an important pandemic threat. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. Through phylogenetic analysis of contemporary swIAVs in the United States, we demonstrate that human-to-swine transmission of pandemic H1N1 (pH1N1) viruses has occurred continuously in the years following the 2009 H1N1 pandemic and has been an important contributor to the genetic diversity of U.S. swIAVs. Although pandemic H1 and N1 segments had been largely removed from the U.S. swine population by 2013 via reassortment with other swIAVs, these antigens reemerged following multiple human-to-swine transmission events during the 2013-2014 seasonal epidemic. These findings indicate that the six internal gene segments from pH1N1 viruses are likely to be sustained long term in the U.S. swine population, with periodic reemergence of pandemic hemagglutinin (HA) and neuraminidase (NA) segments in association with seasonal pH1N1 epidemics in humans. Vaccinating U.S. swine workers may reduce infection of both humans and swine and in turn limit the role of humans as sources of influenza virus diversity in pigs.IMPORTANCESwine are important hosts in the evolution of influenza A viruses with pandemic potential. Here, we analyze influenza virus sequence data generated by the U.S. Department of Agriculture's national surveillance system to identify the central role of humans in the reemergence of pandemic H1N1 (pH1N1) influenza viruses in U.S. swine herds in 2014. These findings emphasize the important role of humans as continuous sources of influenza virus diversity in swine and indicate that influenza viruses with pandemic HA and NA segments are likely to continue to reemerge in U.S. swine in association with seasonal pH1N1 epidemics in humans.


2010 ◽  
Vol 84 (20) ◽  
pp. 10708-10718 ◽  
Author(s):  
Florian Zielecki ◽  
Ilia Semmler ◽  
Donata Kalthoff ◽  
Daniel Voss ◽  
Susanne Mauel ◽  
...  

ABSTRACT We assessed the prediction that access of the viral NS1 protein to cellular PDZ domain protein networks enhances the virulence of highly pathogenic avian influenza A viruses. The NS1 proteins of most avian influenza viruses bear the C-terminal ligand sequence Glu-Ser-Glu-Val (ESEV) for PDZ domains present in multiple host proteins, whereas no such motif is found in the NS1 homologues of seasonal human virus strains. Previous analysis showed that a C-terminal ESEV motif increases viral virulence when introduced into the NS1 protein of mouse-adapted H1N1 influenza virus. To examine the role of the PDZ domain ligand motif in avian influenza virus virulence, we generated three recombinants, derived from the prototypic H5N1 influenza A/Vietnam/1203/04 virus, expressing NS1 proteins that either have the C-terminal ESEV motif or the human influenza virus RSKV consensus or bear a natural truncation of this motif, respectively. Cell biological analyses showed strong control of NS1 nuclear migration in infected mammalian and avian cells, with only minor differences between the three variants. The ESEV sequence attenuated viral replication on cultured human, murine, and duck cells but not on chicken fibroblasts. However, all three viruses caused highly lethal infections in mice and chickens, with little difference in viral titers in organs, mean lethal dose, or intravenous pathogenicity index. These findings demonstrate that a PDZ domain ligand sequence in NS1 contributes little to the virulence of H5N1 viruses in these hosts, and they indicate that this motif modulates viral replication in a strain- and host-dependent manner.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Sign in / Sign up

Export Citation Format

Share Document