scholarly journals Comparison of Nonculture Blood-Based Tests for Diagnosing Invasive Aspergillosis in an Animal Model

2016 ◽  
Vol 54 (4) ◽  
pp. 960-966 ◽  
Author(s):  
P. Lewis White ◽  
Nathan P. Wiederhold ◽  
Juergen Loeffler ◽  
Laura K. Najvar ◽  
Willem Melchers ◽  
...  

The EuropeanAspergillusPCR Initiative (EAPCRI) has provided recommendations for the PCR testing of whole blood (WB) and serum/plasma. It is important to test these recommended protocols on nonsimulated “in vivo” specimens before full clinical evaluation. The testing of an animal model of invasive aspergillosis (IA) overcomes the low incidence of disease and provides experimental design and control that is not possible in the clinical setting. Inadequate performance of the recommended protocols at this stage would require reassessment of methods before clinical trials are performed and utility assessed. The manuscript describes the performance of EAPCRI protocols in an animal model of invasive aspergillosis. Blood samples taken from a guinea pig model of IA were used for WB and serum PCR. Galactomannan and β-d-glucan detection were evaluated, with particular focus on the timing of positivity and on the interpretation of combination testing. The overall sensitivities for WB PCR, serum PCR, galactomannan, and β-d-glucan were 73%, 65%, 68%, and 46%, respectively. The corresponding specificities were 92%, 79%, 80%, and 100%, respectively. PCR provided the earliest indicator of IA, and increasing galactomannan and β-d-glucan values were indicators of disease progression. The combination of WB PCR with galactomannan and β-d-glucan proved optimal (area under the curve [AUC], 0.95), and IA was confidently diagnosed or excluded. The EAPRCI-recommended PCR protocols provide performance comparable to commercial antigen tests, and clinical trials are warranted. By combining multiple tests, IA can be excluded or confirmed, highlighting the need for a combined diagnostic strategy. However, this approach must be balanced against the practicality and cost of using multiple tests.

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Shuyi Ma ◽  
Suraj Jaipalli ◽  
Jonah Larkins-Ford ◽  
Jenny Lohmiller ◽  
Bree B. Aldridge ◽  
...  

ABSTRACT The rapid spread of multidrug-resistant strains has created a pressing need for new drug regimens to treat tuberculosis (TB), which kills 1.8 million people each year. Identifying new regimens has been challenging due to the slow growth of the pathogen Mycobacterium tuberculosis (MTB), coupled with the large number of possible drug combinations. Here we present a computational model (INDIGO-MTB) that identified synergistic regimens featuring existing and emerging anti-TB drugs after screening in silico more than 1 million potential drug combinations using MTB drug transcriptomic profiles. INDIGO-MTB further predicted the gene Rv1353c as a key transcriptional regulator of multiple drug interactions, and we confirmed experimentally that Rv1353c upregulation reduces the antagonism of the bedaquiline-streptomycin combination. A retrospective analysis of 57 clinical trials of TB regimens using INDIGO-MTB revealed that synergistic combinations were significantly more efficacious than antagonistic combinations (P value = 1 × 10−4) based on the percentage of patients with negative sputum cultures after 8 weeks of treatment. Our study establishes a framework for rapid assessment of TB drug combinations and is also applicable to other bacterial pathogens. IMPORTANCE Multidrug combination therapy is an important strategy for treating tuberculosis, the world’s deadliest bacterial infection. Long treatment durations and growing rates of drug resistance have created an urgent need for new approaches to prioritize effective drug regimens. Hence, we developed a computational model called INDIGO-MTB that identifies synergistic drug regimens from an immense set of possible drug combinations using the pathogen response transcriptome elicited by individual drugs. Although the underlying input data for INDIGO-MTB was generated under in vitro broth culture conditions, the predictions from INDIGO-MTB correlated significantly with in vivo drug regimen efficacy from clinical trials. INDIGO-MTB also identified the transcription factor Rv1353c as a regulator of multiple drug interaction outcomes, which could be targeted for rationally enhancing drug synergy.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 690-694 ◽  
Author(s):  
BH Becker ◽  
JL Miller

Abstract Previous studies in the guinea pig model system have established a close structural homology between human and guinea pig glycoproteins Ib (GPIb) and IIb/IIIa (GPIIb/IIIa). Moreover, the murine monoclonal antibody (MoAb) PG-1, which recognizes GPIb in guinea pig platelets and megakaryocytes, exerted full inhibition on von Willebrand factor (vWF)- dependent platelet agglutination without inhibiting aggregation induced by ADP, collagen, or thrombin. The present research extends this animal model system to study of the effects on hemostatic function following the in vivo injection of MoAb PG-1 or its F(ab')2 fragments. A hind limb template bleeding time methodology was developed for use in guinea pigs. Normal bleeding time was determined to be 2.7 +/- 0.5 minutes (mean +/- SD), with an observed range of two to four minutes. Platelet counts in these same animals were 501 +/- 82 x 10(3)/microL. After intraperitoneal (IP) injection of busulfan, guinea pigs became increasingly thrombocytopenic. As long as the platelet count remained above approximately 150 x 10(3)/microL, the bleeding time was not more than five minutes; however, further decrease in the platelet count was accompanied by more marked prolongations of the bleeding time. For 14 to 72 hours after IP injection of 1.3 mg/kg intact PG-1 MoAb, a hemorrhagic state was produced with a bleeding time greater than 20 minutes. The platelet count concurrently decreased to approximately 50% of its baseline value but could not be further decreased either by raising the initial PG-1 dosage tenfold or by administering a second, equal dose 24 hours after the initial injection. This finding may reflect a heterogeneity of circulating platelets with respect to GPIb, to Fc receptors, or to an interaction between them. After IP injection of 0.63 to 2.5 mg/kg PG-1 F(ab')2 fragment, platelet counts did not decrease more than 21% below baseline levels in a 72-hour period, and bleeding times never increased by more than one minute over baseline values. Nevertheless, platelets obtained from animals 24 hours after injection of 2.5 mg/kg PG-1 F(ab')2 showed full inhibition of agglutination induced by ristocetin. The response of these platelets to aggregation by asialo-vWF was also severely inhibited as compared with control platelets. PG-1 F(ab')2 produced no effect on aggregation induced by ADP. These studies show that virtually complete functional block of the vWF receptor by F(ab')2 fragments of the anti-GPIb MoAb PG- 1 is not sufficient to produce a hemorrhagic state in the guinea pig animal model system.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Ximena Castañeda ◽  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Juan M. Pericas ◽  
Yolanda Armero ◽  
...  

ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomycin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving a VAN area under the curve/MIC ratio (AUC/MIC) of ≥400 against three methicillin-resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs in an experimental endocarditis model. The valve vegetation bacterial counts after 48 h of VAN therapy were compared, and no differences were observed between the two treatment groups for any of the three strains tested. Overall, for VAN-SD and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%) (P = 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vegetation were 2 (0 to 6.9) and 2 (0 to 4.5) (P = 0.384), respectively. In conclusion, this VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin efficacy in MRSA experimental endocarditis.


2015 ◽  
Vol 90 (1) ◽  
pp. 392-399 ◽  
Author(s):  
Gary Wong ◽  
Shihua He ◽  
Haiyan Wei ◽  
Andrea Kroeker ◽  
Jonathan Audet ◽  
...  

ABSTRACT Infections with Sudan virus (SUDV), a member of the genus Ebolavirus , result in a severe hemorrhagic fever with a fatal outcome in over 50% of human cases. The paucity of prophylactics and therapeutics against SUDV is attributed to the lack of a small-animal model to screen promising compounds. By repeatedly passaging SUDV within the livers and spleens of guinea pigs in vivo , a guinea pig-adapted SUDV variant (SUDV-GA) uniformly lethal to these animals, with a 50% lethal dose (LD 50 ) of 5.3 × 10 −2 50% tissue culture infective doses (TCID 50 ), was developed. Animals infected with SUDV-GA developed high viremia and died between 9 and 14 days postinfection. Several hallmarks of SUDV infection, including lymphadenopathy, increased liver enzyme activities, and coagulation abnormalities, were observed. Virological analyses and gross pathology, histopathology, and immunohistochemistry findings indicate that SUDV-GA replicates in the livers and spleens of infected animals similarly to SUDV infections in nonhuman primates. These developments will accelerate the development of specific medical countermeasures in preparation for a future disease outbreak due to SUDV. IMPORTANCE A disease outbreak due to Ebola virus (EBOV), suspected to have emerged during December 2013 in Guinea, with over 11,000 dead and 28,000 infected, is finally winding down. Experimental EBOV vaccines and treatments were administered to patients under compassionate circumstances with promising results, and availability of an approved countermeasure appears to be close. However, the same range of experimental candidates against a potential disease outbreak caused by other members of the genus Ebolavirus , such as Sudan virus (SUDV), is not readily available. One bottleneck contributing to this situation is the lack of a small-animal model to screen promising drugs in an efficient and economical manner. To address this, we have generated a SUDV variant (SUDV-GA) that is uniformly lethal to guinea pigs. Animals infected with SUDV-GA develop disease similar to that of SUDV-infected humans and monkeys. We believe that this model will significantly accelerate the development of life-saving measures against SUDV infections.


2020 ◽  
Author(s):  
Antonin C André ◽  
Céline Mulet ◽  
Mark C Anderson ◽  
Louise Injarabian ◽  
Achim Buch ◽  
...  

AbstractShigella spp. are the causative agents of bacillary dysentery or shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates’ protection efficacy have been hampered by the lack of a suitable animal model of infection (1). None of the ones evaluated so far (mouse, rabbit, guinea pig) allows to recapitulate shigellosis symptoms upon Shigella oral challenge. Historical reports suggest that dysentery and scurvy are both metabolic diseases associated with ascorbate-deficiency. Mammals which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are the lonely ones which are unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate-deficiency but not scurvy in guinea pigs (Ascplasma conc.=1.6 μM vs 36 μM with optimal ascorbate supply). We demonstrated that moderate ascorbate-deficiency increases shigellosis severity during extended period of time (up to 48h) with all strains tested (Shigella flexneri 5a and 2a, Shigella sonnei). At late time-points, a massive influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella remains able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. This new model of shigellosis opens new doors for the study both of Shigella infection strategy and innate and adaptive immune responses to Shigella infection. It may be also of a great interest to study the virulence of other pathogen for which no suitable animal model of infection is available (Vibrio cholerae, Yersinia pestis, Mycobacterium tuberculosis or Campylobacter jejuni, among others).SignificanceThe study of Shigella virulence cycle in vivo has been hampered by the lack of a suitable animal model, which would allow the colonic mucosa infection upon oral challenge. Based on historical reports and physiological aspects, it was suggested that ascorbate-deficiency may stand as a new dysentery risk-factor. To test this hypothesis, we set up a new ascorbate-deficient guinea pig model and demonstrated for the first time that the Shigella infectious process occurred for extended period of time (up to 48h) and demonstrated that shigellosis severity was higher in ascorbate-deficient animal. Ascorbate-deficient guinea pig model of infection may be used to assess the virulence of other pathogens for which no suitable animal model of infection is still lacking.


2012 ◽  
Vol 56 (6) ◽  
pp. 3344-3348 ◽  
Author(s):  
Rodrigo Moreira da Silva ◽  
Líliam Teixeira Oliveira ◽  
Neila Márcia Silva Barcellos ◽  
Jacqueline de Souza ◽  
Marta de Lana

ABSTRACTA combination of drugs in experimental chemotherapy of Chagas' disease may increase the effectiveness of treatment. To evaluate the possible mechanisms that influence the improvement of therapy, we investigated the pharmacokinetic interaction between benznidazole and itraconazole in a murine model treated orally with single doses of 5 mg of each compound separately or together. Blood samples from treated mice were collected at different intervals for 48 h, and a high-performance liquid chromatography (HPLC)-UV method was used to quantify both drugs in the plasma. A decrease of 1.5-fold in the maximum drug concentration in the plasma (Cmax) and an increase of 2.66-fold in the volume of distribution (V) and 7.5-fold in the elimination half-life (t1/2β) of benznidazole when coadministered with itraconazole were observed. The parameters area under the curve (AUC0-t), area under the curve extrapolated to infinity (AUC0-∞), time to maximum concentration of drug in serum (Tmax), and clearance (CL) for benznidazole were not significantly different in this therapeutic regime. None of the evaluated parameters for ITC demonstrated a significant difference between isolated and associated administration. These results suggest that the main effect of this interaction leads to accumulation of benznidazole in the biological system. This effect may contribute to the improved therapeutic efficacy of this combination of drugs, in addition to synergism of the different mechanisms of action of benznidazole and itraconazole againstTrypanosoma cruzi in vivo.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Jee Hyun Park ◽  
William Craig ◽  
Karen Marchillo ◽  
David B. Huang ◽  
David R. Andes

ABSTRACT The neutropenic murine thigh infection model was used to define the pharmacokinetic/pharmacodynamic index linked to efficacy of iclaprim against Staphylococcus aureus ATCC 29213 and Staphylococcus pneumoniae ATCC 10813. The 24-h area under the curve (AUC)/MIC index was most closely linked to efficacy for S. aureus ( R 2 , 0.65), while both the 24-h AUC/MIC and the percentage of time that drug concentrations remain above the MIC (% T >MIC) were strongly associated with effect ( R 2 , 0.86 for both parameters) for S. pneumoniae .


2016 ◽  
Vol 60 (4) ◽  
pp. 2343-2345 ◽  
Author(s):  
L. Long ◽  
C. Hager ◽  
M. Ghannoum

ABSTRACTThe treatment of dermatophytoses, including onychomycosis, has come a long way over the past few decades with the introduction of oral antifungals (e.g., terbinafine and itraconazole). However, with these advancements in oral therapies come several undesirable effects, such as kidney and liver toxicity, along with drug-drug interactions. Consequently, there is a need for new topical agents that are effective against dermatophytosis. ME1111 is a topical antifungal under development. In this study, thein vivoefficacy of ME1111 was compared to that of ciclopirox in the topical treatment of dermatophytosis caused byTrichophyton mentagrophytesusing a guinea pig model. Animals were treated with the topical antifungals starting at 3 days postinfection, with each agent being applied once daily for seven consecutive days. After the treatment period, the clinical and mycological efficacies were evaluated. The data showed that both antifungals demonstrated significant clinical and mycological efficacies; however, ME1111 showed clinical efficacy superior to that of ciclopirox (46.9% and 25.0%, respectively, with aPvalue of <0.001). The potent efficacy of ME1111 could be attributed to its properties, such as low keratin binding.


2013 ◽  
Vol 57 (11) ◽  
pp. 5679-5683 ◽  
Author(s):  
Amira A. Bhalodi ◽  
Seth T. Housman ◽  
Ashley Shepard ◽  
James Nugent ◽  
David P. Nicolau

ABSTRACTCefazolin, a first-generation cephalosporin with activity against methicillin-susceptibleStaphylococcus aureusand streptococci, is often used to treat lower limb infections caused by these pathogens. Antimicrobial penetration is often limited in these patients due to compromised vasculature. Therefore, we sought to evaluate the exposure profile of cefazolin in serum and tissue in patients with lower limb infections. Anin vivomicrodialysis catheter was inserted into the tissue near the margin of the wound and constantly perfused with lactated Ringer's solution. Steady-state serum and tissue samples were simultaneously collected over a dosing interval. Serum protein binding was also assessed. Serum concentrations were analyzed by noncompartmental analysis. Tissue concentrations were corrected for percentin vivorecovery by using the retrodialysis technique. Seven patients with a mean weight of 95.45 ± 18.51 kg and a mean age of 54 ± 19 years were enrolled. Six patients received 1 g every 8 h, and one patient received 2 g every 24 h due to acute kidney injury. The free area under the curve from 0 to 8 h (fAUC0–8) values for serum and wound were 48.0 ± 18.66 and 56.35 ± 41.17 μg · h/ml, respectively, for the patients receiving 1 g every 8 h. ThefAUC0–24values for serum and wound were 1,326.1 and 253.9 μg · h/ml, respectively, for the single patient receiving 2 g every 24 h. The mean tissue penetration ratio (tissue/serumfAUC ratio) was 1.06. These data suggest that the amount of time that free-drug concentrations remain above the MIC (fT>MIC) for cefazolin in wound tissue is adequate to treat patients with lower limb infections.


Sign in / Sign up

Export Citation Format

Share Document