scholarly journals Multiplex PCR for Enterotoxigenic, Attaching and Effacing, and Shiga Toxin-Producing Escherichia coli Strains from Calves

1998 ◽  
Vol 36 (6) ◽  
pp. 1795-1797 ◽  
Author(s):  
Sophia M. Franck ◽  
Brad T. Bosworth ◽  
Harley W. Moon

A multiplex PCR was developed to identify enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains by amplifying genes encoding K99 and F41 fimbriae, heat-stable enterotoxin a, intimin, and Shiga toxins 1 and 2. This multiplex PCR was specific and sensitive. It will be useful for identification of E. coli strains which cause diarrhea in calves.

2008 ◽  
Vol 75 (3) ◽  
pp. 862-865 ◽  
Author(s):  
Jeremy J. Gilbreath ◽  
Malcolm S. Shields ◽  
Rebekah L. Smith ◽  
Larry D. Farrell ◽  
Peter P. Sheridan ◽  
...  

ABSTRACT Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle (∼19%).


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 587
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.


2007 ◽  
Vol 73 (10) ◽  
pp. 3144-3150 ◽  
Author(s):  
Martina Bielaszewska ◽  
Rita Prager ◽  
Robin Köck ◽  
Alexander Mellmann ◽  
Wenlan Zhang ◽  
...  

ABSTRACT Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx 2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.


2003 ◽  
Vol 15 (4) ◽  
pp. 378-381 ◽  
Author(s):  
Seung-Kwon Ha ◽  
Changsun Choi ◽  
Chanhee Chae

A total of 604 Escherichia coli strains isolated from weaned pigs with diarrhea or edema disease on 653 swine farms were screened for the presence of the adhesin involved in diffuse adherence (AIDA) gene by polymerase chain reaction (PCR). Escherichia coli isolates that carried AIDA genes were also tested by PCR for the detection of 5 fimbriae (F4, F5, F6, F18, and F41), 3 heat-stable (STa, STb, and EAST1) and 1 heat-labile (LT) enterotoxin, and Shiga toxin 2e (Stx2e) genes. Forty-five (7.5%) of the 604 E. coli isolates carried the gene for AIDA. Of these 45 isolates, 5 (11.1%) carried EAST1 genes only, 1 (2.2%) carried genes for at least one of the fimbrial adhesins, 12 (26.7%) carried genes for at least one of the toxins, and 27 (60%) carried genes for at least one of the fimbrial adhesins and toxins. Fifty-one percent of strains that carried AIDA genes carried Stx2e genes, and 40% of strains that carried AIDA genes carried F18ab. The isolation rate of enterotoxigenic E. coli strain carrying genes for AIDA was 87%, and the isolation rate of Shiga toxin-producing E. coli strain carrying genes for AIDA was 49%. AIDA may represent an important virulence determinant in pigs with postweaning diarrhea or edema disease.


2016 ◽  
Vol 65 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Aleksandra Januszkiewicz ◽  
Waldemar Rastawicki

Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic – uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996 – 2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria.


2014 ◽  
Vol 19 (17) ◽  
Author(s):  
I Friesema ◽  
K van der Zwaluw ◽  
T Schuurman ◽  
M Kooistra-Smid ◽  
E Franz ◽  
...  

The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx2f is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC surveillance in the Netherlands, 198 STEC O157 cases and 351 STEC non-O157 cases, including 87 stx2f STEC isolates, were reported between 2008 and 2011. Most stx2f strains belonged to the serogroups O63:H6 (n=47, 54%), O113:H6 (n=12, 14%) and O125:H6 (n=12, 14%). Of the 87 stx2f isolates, 84 (97%) harboured the E. coli attaching and effacing (eae) gene, but not the enterohaemorrhagic E. coli haemolysin (hly) gene. Stx2f STEC infections show milder symptoms and a less severe clinical course than STEC O157 infections. Almost all infections with stx2f (n=83, 95%) occurred between June and December, compared to 170/198 (86%) of STEC O157 and 173/264 (66%) of other STEC non-O157. Stx2f STEC infections in the Netherlands are more common than anticipated, and form a distinct group within STEC with regard to virulence genes and the relatively mild disease.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 607 ◽  
Author(s):  
Gillian A.M. Tarr ◽  
Taryn Stokowski ◽  
Smriti Shringi ◽  
Phillip I. Tarr ◽  
Stephen B. Freedman ◽  
...  

Escherichia coli O157:H7 is the predominant cause of diarrhea-associated hemolytic uremic syndrome (HUS) worldwide. Its cardinal virulence traits are Shiga toxins, which are encoded by stx genes, the most common of which are stx1a, stx2a, and stx2c. The toxins these genes encode differ in their in vitro and experimental phenotypes, but the human population-level impact of these differences is poorly understood. Using Shiga toxin-encoding bacteriophage insertion typing and real-time polymerase chain reaction, we genotyped isolates from 936 E. coli O157:H7 cases and verified HUS status via chart review. We compared the HUS risk between isolates with stx2a and those with stx2a and another gene and estimated additive interaction of the stx genes. Adjusted for age and symptoms, the HUS incidence of E. coli O157:H7 containing stx2a alone was 4.4% greater (95% confidence interval (CI) −0.3%, 9.1%) than when it occurred with stx1a. When stx1a and stx2a occur together, the risk of HUS was 27.1% lower (95% CI −87.8%, −2.3%) than would be expected if interaction were not present. At the population level, temporal or geographic shifts toward these genotypes should be monitored, and stx genotype may be an important consideration in clinically predicting HUS among E. coli O157:H7 cases.


2011 ◽  
Vol 31 (10) ◽  
pp. 916-921 ◽  
Author(s):  
Terezinha Knöbl ◽  
André B.S Saidenberg ◽  
Andrea M Moreno ◽  
Tânia A.T Gomes ◽  
Mônica A.M Vieira ◽  
...  

Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae), enteropathogenic E. coli EAF plasmid (EAF), pili associated with pyelonephritis (pap), S fimbriae (sfa), afimbrial adhesin (afa), capsule K1 (neu), curli (crl, csgA), temperature-sensitive hemagglutinin (tsh), enteroaggregative heat-stable enterotoxin-1 (astA), heat-stable enterotoxin -1 heat labile (LT) and heat stable (STa and STb) enterotoxins, Shiga-like toxins (stx1 and stx2), cytotoxic necrotizing factor 1 (cnf1), haemolysin (hly), aerobactin production (iuc) and serum resistance (iss). The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) pathotypes.


2007 ◽  
Vol 73 (15) ◽  
pp. 4769-4775 ◽  
Author(s):  
Lothar Beutin ◽  
Angelika Miko ◽  
Gladys Krause ◽  
Karin Pries ◽  
Sabine Haby ◽  
...  

ABSTRACT We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx 1 or variant genes were detected in 88 (40.2%) strains and stx 2 and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx 1, stx 1c, and stx 1d) and the Stx2 (stx 2, stx 2d, stx 2-O118, stx 2e, and stx 2g) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx 2 and/or mucus-activatable stx 2d genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx 2 and stx 2d STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx 2e), lamb, and wildlife meat (stx 1c). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.


2019 ◽  
Vol 8 (45) ◽  
Author(s):  
Michelle Q. Carter ◽  
Antares Pham ◽  
Diana K. Carychao ◽  
Michael B. Cooley

Escherichia coli strains RM9088 and RM10410 were isolated from crows near a leafy greens-growing region in California in April and July 2009, respectively. Both strains carry genes encoding Shiga toxins and other virulence factors in enteric pathogens. Here, we report the complete genome sequences of RM9088 and RM10410.


Sign in / Sign up

Export Citation Format

Share Document