scholarly journals Differential pathogenesis between Andes virus strains CHI-7913 and Chile-9717869in Syrian Hamsters

2021 ◽  
Author(s):  
Bryce M. Warner ◽  
Angela Sloan ◽  
Yvon Deschambault ◽  
Sebastian Dowhanik ◽  
Kevin Tierney ◽  
...  

Hantavirus cardiopulmonary syndrome (HCPS) is a severe respiratory disease caused by orthohantaviruses in the Americas with a fatality rate as high as 35%. In South America, Andes orthohantavirus (Hantaviridae, Orthohantavirus, ANDV) is a major cause of HCPS, particularly in Chile and Argentina, where thousands of cases have been reported since the virus was discovered. Two strains of ANDV that are classically used for experimental studies of the virus are Chile-9717869, isolated from the natural reservoir, the long-tailed pygmy rice rat, and CHI-7913, an isolate from a lethal human case of HCPS. An important animal model for studying pathogenesis of HCPS is the lethal Syrian golden hamster model of ANDV infection. In this model, ANDV strain Chile-9717869 is uniformly lethal and has been used extensively for pathogenesis, vaccination, and therapeutic studies. Here we show that the CHI-7913 strain, despite having high sequence similarity with Chile-9717869, does not cause lethal disease in Syrian hamsters. CHI-7913, while being able to infect hamsters and replicate to moderate levels, showed a reduced ability to replicate within the tissues compared with Chile-9717869. Hamsters infected with CHI-7913 had reduced expression of cytokines IL-4, IL-6, and IFN-γ compared with Chile-9717869 infected animals, suggesting potentially limited immune-mediated pathology. These results demonstrate that certain ANDV strains may not be lethal in the classical Syrian hamster model of infection, and further exploration into the differences between lethal and non-lethal strains provide important insights into molecular determinants of pathogenic hantavirus infection. Importance: Andes orthohantavirus (ANDV) is a New World hantavirus that is a major cause of hantavirus cardiopulmonary syndrome (HCPS, also referred to as hantavirus pulmonary syndrome) in South America, particularly in Chile and Argentina. ANDV is one of the few hantaviruses for which there is a reliable animal model, the Syrian hamster model, which recapitulates important aspects of human disease. Here we infected hamsters with a human isolate of ANDV, CHI-7913, to assess its pathogenicity compared with the classical lethal Chile-9717869 strain. CHI-7913 had 22 amino acid differences compared with Chile-9717869, did not cause lethal disease in hamsters, and showed reduced ability to replicate in vivo. Our data indicate potentially important molecular signatures for pathogenesis of ANDV infection in hamsters and may lead to insights into what drives pathogenesis of certain hantaviruses in humans.

2022 ◽  
Author(s):  
Shuofeng Yuan ◽  
Zi-Wei Ye ◽  
Ronghui Liang ◽  
Kaiming Tang ◽  
Anna Jinxia Zhang ◽  
...  

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.


2016 ◽  
Vol 90 (14) ◽  
pp. 6200-6215 ◽  
Author(s):  
Christopher D. Hammerbeck ◽  
Rebecca L. Brocato ◽  
Todd M. Bell ◽  
Christopher W. Schellhase ◽  
Steven R. Mraz ◽  
...  

ABSTRACTAndes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS.IMPORTANCEHantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.


2019 ◽  
Vol 43 (4) ◽  
pp. 380-388 ◽  
Author(s):  
William S M Wold ◽  
Ann E Tollefson ◽  
Baoling Ying ◽  
Jacqueline F Spencer ◽  
Karoly Toth

ABSTRACTThe symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.


2018 ◽  
Vol 236 (1) ◽  
pp. R69-R91 ◽  
Author(s):  
Claire L Wood ◽  
Ondrej Soucek ◽  
Sze C Wong ◽  
Farasat Zaman ◽  
Colin Farquharson ◽  
...  

Glucocorticoids (GCs) are effective for the treatment of many chronic conditions, but their use is associated with frequent and wide-ranging adverse effects including osteoporosis and growth retardation. The mechanisms that underlie the undesirable effects of GCs on skeletal development are unclear, and there is no proven effective treatment to combat them. An in vivo model that investigates the development and progression of GC-induced changes in bone is, therefore, important and a well-characterized pre-clinical model is vital for the evaluation of new interventions. Currently, there is no established animal model to investigate GC effects on skeletal development and there are pros and cons to consider with the different protocols used to induce osteoporosis and growth retardation. This review will summarize the literature and highlight the models and techniques employed in experimental studies to date.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryutaro Furukawa ◽  
Masahiro Kitabatake ◽  
Noriko Ouji-Sageshima ◽  
Yuki Suzuki ◽  
Akiyo Nakano ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters’ mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.


2020 ◽  
Vol 71 (16) ◽  
pp. 2139-2149 ◽  
Author(s):  
Jasper Fuk-Woo Chan ◽  
Shuofeng Yuan ◽  
Anna Jinxia Zhang ◽  
Vincent Kwok-Man Poon ◽  
Chris Chung-Sing Chan ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be mostly transmitted by medium- to large-sized respiratory droplets, although airborne transmission may be possible in healthcare settings involving aerosol-generating procedures. Exposure to respiratory droplets can theoretically be reduced by surgical mask usage. However, there is a lack of experimental evidence supporting surgical mask usage for prevention of COVID-19. Methods We used a well-established golden Syrian hamster SARS-CoV-2 model. We placed SARS-CoV-2-challenged index hamsters and naive hamsters into closed system units each comprising 2 different cages separated by a polyvinyl chloride air porous partition with unidirectional airflow within the isolator. The effect of a surgical mask partition placed between the cages was investigated. Besides clinical scoring, hamster specimens were tested for viral load, histopathology, and viral nucleocapsid antigen expression. Results Noncontact transmission was found in 66.7% (10/15) of exposed naive hamsters. Surgical mask partition for challenged index or naive hamsters significantly reduced transmission to 25% (6/24, P = .018). Surgical mask partition for challenged index hamsters significantly reduced transmission to only 16.7% (2/12, P = .019) of exposed naive hamsters. Unlike the severe manifestations of challenged hamsters, infected naive hamsters had lower clinical scores, milder histopathological changes, and lower viral nucleocapsid antigen expression in respiratory tract tissues. Conclusions SARS-CoV-2 could be transmitted by respiratory droplets or airborne droplet nuclei which could be reduced by surgical mask partition in the hamster model. This is the first in vivo experimental evidence to support the possible benefit of surgical mask in prevention of COVID-19 transmission, especially when masks were worn by infected individuals.


2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S454-S459
Author(s):  
Sarah C Genzer ◽  
Stephen R Welch ◽  
Florine E M Scholte ◽  
Jessica R Harmon ◽  
JoAnn D Coleman-McCray ◽  
...  

Abstract Nipah virus (NiV; family Paramyxoviridae, genus Henipavirus) infection can cause severe respiratory and neurological disease in humans. The pathophysiology of disease is not fully understood, and it may vary by presentation and clinical course. In this study, we investigate changes in blood chemistry in NiV-infected Syrian hamsters that survived or succumbed to disease. Increased sodium and magnesium and decreased albumin and lactate levels were detected in animals euthanized with severe clinical disease compared with mock-infected controls. When subjects were grouped by clinical syndrome, additional trends were discernable, highlighting changes associated with either respiratory or neurological disease.


2020 ◽  
Vol 21 (23) ◽  
pp. 9062
Author(s):  
Barbara Kędzierska ◽  
Katarzyna Potrykus ◽  
Agnieszka Szalewska-Pałasz ◽  
Beata Wodzikowska

Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the −35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.


2013 ◽  
Vol 4 (5) ◽  
pp. 447-464 ◽  
Author(s):  
Nicholas J. Bradshaw ◽  
William Hennah ◽  
Dinesh C. Soares

AbstractNuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar ‘nature’ in terms of their structure and basic functions, appear to be different in their ‘nurture’, the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Nicola Barbarini ◽  
Luca Simonelli ◽  
Alberto Azzalin ◽  
Sergio Comincini ◽  
Riccardo Bellazzi

Protein interactions are crucial in most biological processes. Several in silico methods have been recently developed to predict them. This paper describes a bioinformatics method that combines sequence similarity and structural information to support experimental studies on protein interactions. Given a target protein, the approach selects the most likely interactors among the candidates revealed by experimental techniques, but not yet in vivo validated. The sequence and the structural information of the in vivo confirmed proteins and complexes are exploited to evaluate the candidate interactors. Finally, a score is calculated to suggest the most likely interactors of the target protein. As an example, we searched for GRB2 interactors. We ranked a set of 46 candidate interactors by the presented method. These candidates were then reduced to 21, through a score threshold chosen by means of a cross-validation strategy. Among them, the isoform 1 of MAPK14 was in silico confirmed as a GRB2 interactor. Finally, given a set of already confirmed interactors of GRB2, the accuracy and the precision of the approach were 75% and 86%, respectively. In conclusion, the proposed method can be conveniently exploited to select the proteins to be experimentally investigated within a set of potential interactors.


Sign in / Sign up

Export Citation Format

Share Document