scholarly journals Interleukin-15-Stimulated Natural Killer Cells Clear HIV-1-Infected Cells following Latency ReversalEx Vivo

2018 ◽  
Vol 92 (12) ◽  
pp. e00235-18 ◽  
Author(s):  
Carolina Garrido ◽  
Maria Abad-Fernandez ◽  
Marina Tuyishime ◽  
Justin J. Pollara ◽  
Guido Ferrari ◽  
...  

ABSTRACTCurrent efforts toward human immunodeficiency virus (HIV) eradication include approaches to augment immune recognition and elimination of persistently infected cells following latency reversal. Natural killer (NK) cells, the main effectors of the innate immune system, recognize and clear targets using different mechanisms than CD8+T cells, offering an alternative or complementary approach for HIV clearance strategies. We assessed the impact of interleukin 15 (IL-15) treatment on NK cell function and the potential for stimulated NK cells to clear the HIV reservoir. We measured NK cell receptor expression, antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxicity, interferon gamma (IFN-γ) production, and antiviral activity in autologous HIV replication systems. All NK cell functions were uniformly improved by IL-15, and, more importantly, IL-15-treated NK cells were able to clear latently HIV-infected cells after exposure to vorinostat, a clinically relevant latency-reversing agent. We also demonstrate that NK cells from HIV-infected individuals aviremic on antiretroviral therapy can be efficiently stimulated with IL-15. Our work opens a promising line of investigation leading to future immunotherapies to clear persistent HIV infection using NK cells.IMPORTANCEIn the search for an HIV cure, strategies to enhance immune function to allow recognition and clearance of HIV-infected cells following latency reversal are being evaluated. Natural killer (NK) cells possess characteristics that can be exploited for immunotherapy against persistent HIV infection. We demonstrate that NK cells from HIV-positive donors can be strongly stimulated with IL-15, improving their antiviral and cytotoxic potential and, more importantly, clearing HIV-infected cells after latency reversal with a clinically relevant drug. Our results encourage further investigation to design NK cell-based immunotherapies to achieve HIV eradication.

Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Jeffrey Ward ◽  
Matthew Bonaparte ◽  
Jennifer Sacks ◽  
Jacqueline Guterman ◽  
Manuela Fogli ◽  
...  

AbstractThe ability of natural killer (NK) cells to kill virus-infected cells depends on the presence of ligands for activation receptors on the target cells. We found the presence of few, if any, NKp30 and NK46 ligands on T cell blasts infected with HIV, although NKp44 ligands were found on infected cells. HIV does induce the NKG2D ligands ULBP-1, -2, and -3. These ligands are involved in triggering NK cells to kill autologous HIV-infected cells, because interfering with the interaction between NKG2D, but not NKp46, on NK cells and its ligands on HIV-infected cells drastically reduced the lysis of infected cells. Interfering with the binding of the NK-cell coreceptors NTB-A and 2B4 to their ligands also decreased destruction by NK cells. The coreceptor ligands, NTB-A and CD48, were also found to be down-regulated during the course of HIV infection. Thus, ligands for NK-cell receptors are modulated during the course of HIV infection, which may greatly alter NK cells' ability to kill the infected cells.


2004 ◽  
Vol 11 (5) ◽  
pp. 879-888 ◽  
Author(s):  
Sunwoong S. Choi ◽  
Vaninder S. Chhabra ◽  
Quoc H. Nguyen ◽  
Bonnie J. Ank ◽  
E. Richard Stiehm ◽  
...  

ABSTRACT Newborn infants have a higher susceptibility to various pathogens due to developmental defects in their host defense system, including deficient natural killer (NK) cell function. In this study, the effects of interleukin-15 (IL-15) on neonatal NK cells was examined for up to 12 weeks in culture. The cytotoxicity of fresh neonatal mononuclear cells (MNC) as assayed by K562 cell killing is initially much less than that of adult MNC but increases more than eightfold after 2 weeks of culture with IL-15 to a level equivalent to that of adult cells. This high level of cytotoxicity was maintained for up to 12 weeks. In antibody-dependent cellular cytotoxicity (ADCC) assays using CEM cells coated with human immunodeficiency virus gp120 antigen, IL-15 greatly increased ADCC lysis by MNC from cord blood. IL-15 increased expression of the CD16+ CD56+ NK markers of cord MNC fivefold after 5 weeks of incubation. Cultures of neonatal MNC with IL-15 for up to 10 weeks resulted in a unique population of CD3− CD8+ CD56+ cells (more than 60%), which are not present in fresh cord MNC. These results show that IL-15 can stimulate neonatal NK cells and sustain their function for several weeks, which has implications for the clinical use of IL-15.


2020 ◽  
Vol 20 (3) ◽  
pp. 202-219
Author(s):  
Dmitry Olegovich Bazhenov ◽  
Evgeniya Valerevna Khokhlova ◽  
Larisa Pavlovna Viazmina ◽  
Kseniya Nikolaevna Furaeva ◽  
Valentina Anatolievna Mikhailova ◽  
...  

Background:: Maternal natural killer cells (NK cells) are a prevailing leukocyte population in the uteroplacental bed. Current descriptions of the effect of cytokines from the placental microenvironment on the expression of receptors by trophoblast and NK cells are inadequate and contradictory. There is insufficient information about the ability of NK cells to migrate through trophoblast cells. Objective:: To assess the impact of conditioned media obtained during culturing of placentas from the first and the third trimesters of healthy pregnancies on the phenotype of trophoblast and NK cells and impact on adhesion and transmigration of NK cells through trophoblast cell layer. Results:: We established that conditioned media obtained from both first and third trimester placentas increased the intensity of CD106, CD49e, CD49a, CD31, CD51/61, and integrin β6 expression by trophoblast cells. Conditioned media obtained from first trimester placentas increased the intensity of CD11a, CD29, CD49d, CD58, CD29 expression by NK cells. The presence of conditioned media from third trimester placentas resulted in more intense CD29, CD49d, CD11a, CD29, CD49d, and CD58 expression by NK cells. Migration of NK cells through trophoblast cells in the presence of conditioned media from first trimester placentas was increased compared with the migration level in the presence of conditioned media from third trimester placentas. This may be associated with increased expression of CD18 by NK cells. Conclusion:: First trimester placental secretory products increase adhesion receptor expression by both trophoblast and NK cells. Under these conditions, trophoblast is capable of ensuring NK cell adhesion and transmigration.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Zahra Kiani ◽  
Franck P. Dupuy ◽  
Julie Bruneau ◽  
Bertrand Lebouché ◽  
Christelle Retière ◽  
...  

ABSTRACT Several studies support a role for specific killer immunoglobulin-like receptor (KIR)–HLA combinations in protection from HIV infection and slower progression to AIDS. Natural killer (NK) cells acquire effector functions through education, a process that requires the interaction of inhibitory NK cell receptors with their major histocompatibility complex (MHC) class I (or HLA class I [HLA-I]) ligands. HLA-C allotypes are ligands for the inhibitory KIRs (iKIRs) KIR2DL1, KIR2DL2, and KIR2DL3, whereas the ligand for KIR3DL1 is HLA-Bw4. HIV infection reduces the expression of HLA-A, -B, and -C on the surfaces of infected CD4 (iCD4) T cells. Here we investigated whether education through iKIR-HLA interactions influenced NK cell responses to autologous iCD4 cells. Enriched NK cells were stimulated with autologous iCD4 cells or with uninfected CD4 cells as controls. The capacities of single-positive (sp) KIR2DL1, KIR2DL2, KIR2DL3, and KIR3DL1 NK cells to produce CCL4, gamma interferon (IFN-γ), and/or CD107a were assessed by flow cytometry. Overall, we observed that the potency of NK cell education was directly related to the frequency of each spiKIR+ NK cell’s ability to respond to the reduction of its cognate HLA ligand on autologous iCD4 cells, as measured by the frequency of production by spiKIR+ NK cells of CCL4, IFN-γ, and/or CD107a. Both NK cell education and HIV-mediated changes in HLA expression influenced NK cell responses to iCD4 cells. IMPORTANCE Epidemiological studies show that natural killer (NK) cells have anti-HIV activity: they are able to reduce the risk of HIV infection and/or slow HIV disease progression. How NK cells contribute to these outcomes is not fully characterized. We used primary NK cells and autologous HIV-infected cells to examine the role of education through four inhibitory killer immunoglobulin-like receptors (iKIRs) from persons with HLA types that are able to educate NK cells bearing one of these iKIRs. HIV-infected cells activated NK cells through missing-self mechanisms due to the downmodulation of cell surface HLA expression mediated by HIV Nef and Vpu. A higher frequency of educated than uneducated NK cells expressing each of these iKIRs responded to autologous HIV-infected cells by producing CCL4, IFN-γ, and CD107a. Since NK cells were from non-HIV-infected individuals, they model the consequences of healthy NK cell–HIV-infected cell interactions occurring in the HIV eclipse phase, when new infections are susceptible to extinction.


2021 ◽  
Vol 9 (4) ◽  
pp. e002193
Author(s):  
Sigrid P Dubois ◽  
Milos D Miljkovic ◽  
Thomas A Fleisher ◽  
Stefania Pittaluga ◽  
Jennifer Hsu-Albert ◽  
...  

BackgroundFull application of cytokines as oncoimmunotherapeutics requires identification of optimal regimens. Our initial effort with intravenous bolus recombinant human interleukin-15 (rhIL-15) was limited by postinfusional reactions. Subcutaneous injection and continuous intravenous infusion for 10 days (CIV-10) provided rhIL-15 with less toxicity with CIV-10 giving the best increases in CD8+ lymphocytes and natural killer (NK) cells. To ease rhIL-15 administration, we shortened time of infusion. Treatment with rhIL-15 at a dose of 3–5 µg/kg as a 5-day continuous intravenous infusion (CIV-5) had no dose-limiting toxicities while effector cell stimulation was comparable to the CIV-10 regimen.MethodsEleven patients with metastatic cancers were treated with rhIL-15 CIV-5, 3 µg (n=4), 4 µg (n=3), and 5 µg/kg/day (n=4) in a phase I dose-escalation study (April 6, 2012).ResultsImpressive expansions of NK cells were seen at all dose levels (mean 34-fold), including CD56bright NK cells (mean 144-fold for 4 µg/kg), as well as an increase in CD8+ T cells (mean 3.38-fold). At 5 µg/kg/day, there were no dose-limiting toxicities but pulmonary capillary leak and slower patient recovery. This led to our choice of the 4 µg/kg as CIV-5 dose for further testing. Cytolytic capacity of CD56bright and CD56dim NK cells was increased by interleukin-15 assayed by antibody-dependent cellular cytotoxicity (ADCC), natural cytotoxicity and natural killer group 2D-mediated cytotoxicity. The best response was stable disease.ConclusionsIL-15 administered as CIV-5 substantially expanded NK cells with increased cytotoxic functions. Tumor-targeting monoclonal antibodies dependent on ADCC as their mechanism of action including alemtuzumab, obinutuzumab, avelumab, and mogamulizumab could benefit from those NK cell expansions and provide a promising therapeutic strategy.Trial registration numbersNCT01572493, NCT03759184, NCT03905135, NCT04185220 and NCT02689453.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ondrej Venglar ◽  
Julio Rodriguez Bago ◽  
Benjamin Motais ◽  
Roman Hajek ◽  
Tomas Jelinek

Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.


2021 ◽  
Vol 5 (3) ◽  
pp. 192-194
Author(s):  
Arosh S. Perera Molligoda Arachchige ◽  

<abstract> <p>No therapeutic drug has been able to completely eradicate HIV-infection so far, even after decades of research. A major challenge in HIV drug development is its immense diversity. NK cells are well-known for their anti-viral and anti-tumor functions. Since recently, NK cells have gained interest of researchers as they have paved the way for novel approaches in controlling HIV-infection supported by promising results observed in cancer immunotherapy trials. Here we report an anti-DNP CAR-NK cell approach introduced by Lim et al. capable of recognizing 2,4-dinitrophenyl tagged to anti-gp160 antibodies, which seemingly provides an effective solution to counteract HIV variability.</p> </abstract>


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3647-3657 ◽  
Author(s):  
Haixin Yu ◽  
Todd A. Fehniger ◽  
Pascal Fuchshuber ◽  
Karl S. Thiel ◽  
Eric Vivier ◽  
...  

Abstract Interleukin-15 (IL-15) is produced by human bone marrow (BM) stromal cells and can induce CD34+ hematopoietic progenitor cells (HPCs) to differentiate into CD56+CD3−natural killer (NK) cells in the absence of stromal cells. IL-15 mediates its effects by signaling through the β and γcchains of the IL-2/15 receptor (R). The c-kit ligand (KL), also produced by stromal cells, enhances the expansion of NK cells from CD34+ HPCs in the presence of IL-15, but alone has no ability to differentiate NK cells. Mice deficient in KL do not appear to have a quantitative deficiency in NK cells, suggesting that other stromal cell factors may contribute to NK cell expansion. Flt3 ligand (FL) is also produced by BM stromal cells and has homology with KL. Furthermore, mice with a targeted disruption of the FL gene have reduced numbers of NK cells. We evaluated here the effects of FL on human NK cell development and expansion from CD34+ HPCs. Like KL, FL significantly enhanced the expansion of NK cells from CD34+ HPCs in the presence of IL-15, compared with IL-15 alone. However, FL alone had no effect on NK cell differentiation. We therefore explored the mechanism by which FL promotes IL-15–mediated NK cell development. FL was found to induce IL-2/15Rβ (CD122) expression on CD34bright HPCs. The CD34brightCD122+ cell coexpressed CD38, but lacked expression of CD7, CD56, NK cell receptors (NKRs), or cytotoxic activity in the absence of IL-15. Using limiting dilution analysis in the presence of IL-15 alone, we demonstrated that the FL-induced CD34brightCD122+ HPCs had an NK cell precursor frequency 20- to 60-fold higher than the CD34dim/negCD122− HPCs and 65- to 235-fold higher than fresh CD34+ HPCs. KL had similar effects as FL, but induced a significantly lower percentage of CD34brightCD122+ cells (P ≤ .01). Both FL and KL also increased IL-15R transcript in CD34+ HPCs. Culture of CD34+ HPCs in FL or KL, followed by culture in IL-15 alone, induced expression of both C-type lectin and Ig-superfamily NKRs on CD56+ cells. These data collectively support a role for FL in early human NK cell development. FL or KL generate a unique CD34brightCD122+CD38+ human NK cell intermediate from CD34+ HPCs that lacks NK features yet is IL-15–responsive. IL-15 is then required for the induction of CD56 and NKRs, LGL morphology, cytotoxic activity, and the ability to produce abundant cytokines and chemokines.


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5758-5768 ◽  
Author(s):  
Saar Gill ◽  
Adrianne E. Vasey ◽  
Alysha De Souza ◽  
Jeanette Baker ◽  
Aaron T. Smith ◽  
...  

Abstract Natural killer (NK) cells are potent anti-viral and antitumor “first responders” endowed with natural cytotoxicity and cytokine production capabilities. To date, attempts to translate these promising biologic functions through the adoptive transfer of NK cells for the treatment of cancer have been of limited benefit. Here we trace the fate of adoptively transferred murine NK cells and make the surprising observation that NK cells traffic to tumor sites yet fail to control tumor growth or improve survival. This dysfunction is related to a rapid down-regulation of activating receptor expression and loss of important effector functions. Loss of interferon (IFN)γ production occurs early after transfer, whereas loss of cytotoxicity progresses with homeostatic proliferation and tumor exposure. The dysfunctional phenotype is accompanied by down-regulation of the transcription factors Eomesodermin and T-bet, and can be partially reversed by the forced overexpression of Eomesodermin. These results provide the first demonstration of NK-cell exhaustion and suggest that the NK-cell first-response capability is intrinsically limited. Further, novel approaches may be required to circumvent the described dysfunctional phenotype.


Sign in / Sign up

Export Citation Format

Share Document