scholarly journals Potato Virus Y HCPro Suppression of Antiviral Silencing in Nicotiana benthamiana Plants Correlates with Its Ability To Bind In Vivo to 21- and 22-Nucleotide Small RNAs of Viral Sequence

2017 ◽  
Vol 91 (12) ◽  
Author(s):  
Francisco J. del Toro ◽  
Livia Donaire ◽  
Emmanuel Aguilar ◽  
Bong-Nam Chung ◽  
Francisco Tenllado ◽  
...  

ABSTRACT We have investigated short and small RNAs (sRNAs) that were bound to a biologically active hexahistidine-tagged Potato virus Y (PVY) HCPro suppressor of silencing, expressed from a heterologous virus vector in Nicotiana benthamiana plants, and purified under nondenaturing conditions. We found that RNAs in purified preparations were differentially enriched in 21-nucleotide (nt) and, to a much lesser extent, 22-nt sRNAs of viral sequences (viral sRNAs [vsRNAs]) compared to those found in a control plant protein background bound to nickel resin in the absence of HCPro or in a purified HCPro alanine substitution mutant (HCPro mutB) control that lacked suppressor-of-silencing activity. In both controls, sRNAs were composed almost entirely of molecules of plant sequence, indicating that the resin-bound protein background had no affinity for vsRNAs and also that HCPro mutB failed to bind to vsRNAs. Therefore, PVY HCPro suppressor activity correlated with its ability to bind to 21- and 22-nt vsRNAs. HCPro constituted at least 54% of the total protein content in purified preparations, and we were able to calculate its contribution to the 21- and the 22-nt pools of sRNAs present in the purified samples and its binding strength relative to the background. We also found that in the 21-nt vsRNAs of the HCPro preparation, 5′-terminal adenines were overrepresented relative to the controls, but this was not observed in vsRNAs of other sizes or of plant sequences. IMPORTANCE It was previously shown that HCPro can bind to long RNAs and small RNAs (sRNAs) in vitro and, in the case of Turnip mosaic virus HCPro, also in vivo in arabidopsis AGO2-deficient plants. Our data show that PVY HCPro binds in vivo to sRNAs during infection in wild-type Nicotiana benthamiana plants when expressed from a heterologous virus vector. Using a suppression-of-silencing-deficient HCPro mutant that can accumulate in this host when expressed from a virus vector, we also show that sRNA binding correlates with silencing suppression activity. We demonstrate that HCPro binds at least to sRNAs with viral sequences of 21 nucleotides (nt) and, to a much lesser extent, of 22 nt, which were are also differentially enriched in 5′-end adenines relative to the purified controls. Together, our results support the physical binding of HCPro to vsRNAs of 21 and 22 nt as a means to interfere with antiviral silencing.

2019 ◽  
Vol 86 (1) ◽  
Author(s):  
Jee-Hwan Oh ◽  
Xiaoxi B. Lin ◽  
Shenwei Zhang ◽  
Stephanie L. Tollenaar ◽  
Mustafa Özçam ◽  
...  

ABSTRACT The gut microbiota harbors a diverse phage population that is largely derived from lysogens, which are bacteria that contain dormant phages in their genome. While the diversity of phages in gut ecosystems is getting increasingly well characterized, knowledge is limited on how phages contribute to the evolution and ecology of their host bacteria. Here, we show that biologically active prophages are widely distributed in phylogenetically diverse strains of the gut symbiont Lactobacillus reuteri. Nearly all human- and rodent-derived strains, but less than half of the tested strains of porcine origin, contain active prophages, suggesting different roles of phages in the evolution of host-specific lineages. To gain insight into the ecological role of L. reuteri phages, we developed L. reuteri strain 6475 as a model to study its phages. After administration to mice, L. reuteri 6475 produces active phages throughout the intestinal tract, with the highest number detected in the distal colon. Inactivation of recA abolished in vivo phage production, which suggests that activation of the SOS response drives phage production in the gut. In conventional mice, phage production reduces bacterial fitness as fewer wild-type bacteria survive gut transit compared to the mutant lacking prophages. However, in gnotobiotic mice, phage production provides L. reuteri with a competitive advantage over a sensitive host. Collectively, we uncovered that the presence of prophages, although associated with a fitness trade-off, can be advantageous for a gut symbiont by killing a competitor strain in its intestinal niche. IMPORTANCE Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Angela T. Nguyen ◽  
Luke K. Brewer ◽  
Justin Bevere ◽  
Jace W. Jones ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that requires iron for virulence. Iron homeostasis is maintained in part by the PrrF1 and PrrF2 small RNAs (sRNAs), which block the expression of iron-containing proteins under iron-depleted conditions. The PrrF sRNAs also promote the production of the Pseudomonas quinolone signal (PQS), a quorum sensing molecule that activates the expression of several virulence genes. The tandem arrangement of the prrF genes allows for expression of a third sRNA, PrrH, which is predicted to regulate gene expression through its unique sequence derived from the prrF1-prrF2 intergenic (IG) sequence (the PrrHIG sequence). Previous studies showed that the prrF locus is required for acute lung infection. However, the individual functions of the PrrF and PrrH sRNAs were not determined. Here, we describe a system for differentiating PrrF and PrrH functions by deleting the PrrHIG sequence [prrF(ΔHIG)]. Our analyses of this construct indicate that the PrrF sRNAs, but not PrrH, are required for acute lung infection by P. aeruginosa. Moreover, we show that the virulence defect of the ΔprrF1-prrF2 mutant is due to decreased bacterial burden during acute lung infection. In vivo analysis of gene expression in lung homogenates shows that PrrF-mediated regulation of genes for iron-containing proteins is disrupted in the ΔprrF1-prrF2 mutant during infection, while the expression of genes that mediate PrrF-regulated PQS production are not affected by prrF deletion in vivo. Combined, these studies demonstrate that regulation of iron utilization plays a critical role in P. aeruginosa's ability to survive during infection.


2015 ◽  
Vol 28 (7) ◽  
pp. 739-750 ◽  
Author(s):  
Matevz Rupar ◽  
Florence Faurez ◽  
Michel Tribodet ◽  
Ion Gutiérrez-Aguirre ◽  
Agnès Delaunay ◽  
...  

Potato virus Y (PVY) is an economically important plant virus that infects Solanaceous crops such as tobacco and potato. To date, studies into the localization and movement of PVY in plants have been limited to detection of viral RNA or proteins ex vivo. Here, a PVY N605 isolate was tagged with green fluorescent protein (GFP), characterized and used for in vivo tracking. In Nicotiana tabacum cv. Xanthi, PVY N605-GFP was biologically comparable to nontagged PVY N605, stable through three plant-to-plant passages and persisted for four months in infected plants. GFP was detected before symptoms and fluorescence intensity correlated with PVY RNA concentrations. PVY N605-GFP provided in vivo tracking of long-distance movement, allowing estimation of the cell-to-cell movement rate of PVY in N. tabacum cv. Xanthi (7.1 ± 1.5 cells per hour). PVY N605-GFP was adequately stable in Solanum tuberosum cvs. Désirée and NahG-Désirée and able to infect S. tuberosum cvs. Bintje and Bea, Nicotiana benthamiana, and wild potato relatives. PVY N605-GFP is therefore a powerful tool for future studies of PVY-host interactions, such as functional analysis of viral and plant genes involved in viral movement.


2012 ◽  
Vol 56 (11) ◽  
pp. 5764-5773 ◽  
Author(s):  
Joel Tarning ◽  
Palang Chotsiri ◽  
Vincent Jullien ◽  
Marcus J. Rijken ◽  
Martin Bergstrand ◽  
...  

ABSTRACTAmodiaquine is effective for the treatment ofPlasmodium vivaxmalaria, but there is little information on the pharmacokinetic and pharmacodynamic properties of amodiaquine in pregnant women with malaria. This study evaluated the population pharmacokinetic and pharmacodynamic properties of amodiaquine and its biologically active metabolite, desethylamodiaquine, in pregnant women withP. vivaxinfection and again after delivery. Twenty-seven pregnant women infected withP. vivaxmalaria on the Thai-Myanmar border were treated with amodiaquine monotherapy (10 mg/kg/day) once daily for 3 days. Nineteen women, with and withoutP. vivaxinfections, returned to receive the same amodiaquine dose postpartum. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic and pharmacodynamic properties of amodiaquine and desethylamodiaquine. Amodiaquine plasma concentrations were described accurately by lagged first-order absorption with a two-compartment disposition model followed by a three-compartment disposition of desethylamodiaquine under the assumption of completein vivoconversion. Body weight was implemented as an allometric function on all clearance and volume parameters. Amodiaquine clearance decreased linearly with age, and absorption lag time was reduced in pregnant patients. Recurrent malaria infections in pregnant women were modeled with a time-to-event model consisting of a constant-hazard function with an inhibitory effect of desethylamodiaquine. Amodiaquine treatment reduced the risk of recurrent infections from 22.2% to 7.4% at day 35. In conclusion, pregnancy did not have a clinically relevant impact on the pharmacokinetic properties of amodiaquine or desethylamodiaquine. No dose adjustments are required in pregnancy.


1992 ◽  
Vol 14 (1) ◽  
pp. 18-21 ◽  
Author(s):  
R.P. Singh ◽  
A. Boucher ◽  
R.G. Wang ◽  
T.H. Somerville

2020 ◽  
Author(s):  
Liyun Song ◽  
Jie Wang ◽  
Haiyan Jia ◽  
Ali Kamran ◽  
Yuanxia Qin ◽  
...  

Abstract Background: Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco ( Nicotiana benthamiana ) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection. Results: In this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana , denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance. Conclusions: Taken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.


2011 ◽  
Vol 193 (22) ◽  
pp. 6315-6322 ◽  
Author(s):  
Daniel J. Schu ◽  
Revathy Ramachandran ◽  
Jared S. Geissinger ◽  
Ann M. Stevens

The quorum-sensing regulator EsaR fromPantoea stewartiisubsp.stewartiiis a LuxR homologue that is inactivated by acyl-homoserine lactone (AHL). In the corn pathogenP. stewartii, production of exopolysaccharide (EPS) is repressed by EsaR at low cell densities. However, at high cell densities when high concentrations of its cognate AHL signal are present, EsaR is inactivated and derepression of EPS production occurs. Thus, EsaR responds to AHL in a manner opposite to that of most LuxR family members. Depending on the position of its binding site within target promoters, EsaR serves as either a repressor or activator in the absence rather than in the presence of its AHL ligand. The effect of AHL on LuxR homologues has been difficult to studyin vitrobecause AHL is required for purification and stability. EsaR, however, can be purified without AHL enabling anin vitroanalysis of the response of the protein to ligand. Western immunoblots and pulse-chase experiments demonstrated that EsaR is stablein vivoin the absence or presence of AHL. Limitedin vitroproteolytic digestions of a biologically active His-MBP tagged version of EsaR highlighted intradomain and interdomain conformational changes that occur in the protein in response to AHL. Gel filtration chromatography of the full-length fusion protein and cross-linking of the N-terminal domain both suggest that this conformational change does not impact the multimeric state of the protein. These findings provide greater insight into the diverse mechanisms for AHL responsiveness found within the LuxR family.


Sign in / Sign up

Export Citation Format

Share Document