scholarly journals Identification of a Novel Antiviral Inhibitor of the Flavivirus Guanylyltransferase Enzyme

2012 ◽  
Vol 86 (16) ◽  
pp. 8730-8739 ◽  
Author(s):  
Hillary J. Stahla-Beek ◽  
Daniel G. April ◽  
Bejan J. Saeedi ◽  
Amanda M. Hannah ◽  
Susan M. Keenan ◽  
...  

Arthropod-borne flavivirus infection causes serious morbidity and mortality worldwide, but there are currently no effective antiflaviviral chemotherapeutics available for human use. Therefore, it is critical that new therapeutics against virus-specific targets be developed. To identify new compounds that may be used as broadly active flavivirus therapeutics, we have performed a high-throughput screening of 235,456 commercially available compounds for small-molecule inhibitors of the dengue virus NS5 RNA capping enzyme. We identified a family of compounds, the 2-thioxothiazolidin-4-ones, that show potent biochemical inhibition of capping enzyme GTP binding and guanylyltransferase function. During the course of structure-activity relationship analysis, a molecule within this family, (E)-{3-[5-(4-tert-butylbenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid} (BG-323), was found to possess significant antiviral activity in a dengue virus subgenomic replicon assay. Further testing of BG-323 demonstrated that this molecule is able to reduce the replication of infectious West Nile virus and yellow fever virus in cell culture with low toxicity. The results of this study describe the first inhibitor that targets the GTP-binding/guanylyltransferase activity of the flavivirus RNA capping enzyme.

2007 ◽  
Vol 81 (21) ◽  
pp. 11992-12004 ◽  
Author(s):  
Amine O. Noueiry ◽  
Paul D. Olivo ◽  
Urszula Slomczynska ◽  
Yi Zhou ◽  
Ben Buscher ◽  
...  

ABSTRACT West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25795 ◽  
Author(s):  
Brittney R. Henderson ◽  
Bejan J. Saeedi ◽  
Grace Campagnola ◽  
Brian J. Geiss

2011 ◽  
Vol 16 (8) ◽  
pp. 852-861 ◽  
Author(s):  
Brian J. Geiss ◽  
Hillary J. Stahla-Beek ◽  
Amanda M. Hannah ◽  
Hamid H. Gari ◽  
Brittney R. Henderson ◽  
...  

There are no effective antivirals currently available for the treatment of flavivirus infection in humans. As such, the identification and characterization of novel drug target sites are critical to developing new classes of antiviral drugs. The flavivirus NS5 N-terminal capping enzyme (CE) is vital for the formation of the viral RNA cap structure, which directs viral polyprotein translation and stabilizes the 5′ end of the viral genome. The structure of the flavivirus CE has been solved, and a detailed understanding of the CE–guanosine triphosphate (GTP) and CE–RNA cap interactions is available. Because of the essential nature of the interaction for viral replication, disrupting CE–GTP binding is an attractive approach for drug development. The authors have previously developed a robust assay for monitoring CE–GTP binding in real time. They adapted this assay for high-throughput screening and performed a pilot screen of 46 323 commercially available compounds. A number of small-molecule inhibitors capable of displacing a fluorescently labeled GTP in vitro were identified, and a second functional assay was developed to identify false positives. The results presented indicate that the flavivirus CE cap-binding site is a valuable new target site for antiviral drug discovery and should be further exploited for broad-spectrum anti-flaviviral drug development.


2018 ◽  
Vol 25 (5) ◽  
pp. 636-658 ◽  
Author(s):  
Jan Pokorny ◽  
Lucie Borkova ◽  
Milan Urban

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


2015 ◽  
Vol 60 (1) ◽  
pp. 640-645 ◽  
Author(s):  
Flavia Sorrentino ◽  
Ruben Gonzalez del Rio ◽  
Xingji Zheng ◽  
Jesus Presa Matilla ◽  
Pedro Torres Gomez ◽  
...  

ABSTRACTHere we describe the development and validation of an intracellular high-throughput screening assay for finding new antituberculosis compounds active in human macrophages. The assay consists of a luciferase-based primary identification assay, followed by a green fluorescent protein-based secondary profiling assay. Standard tuberculosis drugs and 158 previously recognized active antimycobacterial compounds were used to evaluate assay robustness. Data show that the assay developed is a short and valuable tool for the discovery of new antimycobacterial compounds.


2012 ◽  
Vol 56 (6) ◽  
pp. 3399-3401 ◽  
Author(s):  
Kevin D. McCormick ◽  
Shufeng Liu ◽  
Jana L. Jacobs ◽  
Ernesto T. A. Marques ◽  
Nicolas Sluis-Cremer ◽  
...  

ABSTRACTWe have developed a robust cytopathic effect-based high-throughput screening assay to identify inhibitors of dengue virus (DENV) infection. Screening of a small natural product library yielded 11 hits. Four of these were found to be potent inhibitors of DENV, although serotype differences were noted. Taken together, these data suggest that screening of larger and more complex molecule libraries may result in the identification of more potent and specific DENV inhibitors.


2020 ◽  
Vol 21 (19) ◽  
pp. 7162
Author(s):  
Elizaveta D. Gladkova ◽  
Ivan V. Nechepurenko ◽  
Roman A. Bredikhin ◽  
Arina A. Chepanova ◽  
Alexandra L. Zakharenko ◽  
...  

A series of berberine and tetrahydroberberine sulfonate derivatives were prepared and tested against the tyrosyl-DNA phosphodiesterase 1 (Tdp1) DNA-repair enzyme. The berberine derivatives inhibit the Tdp1 enzyme in the low micromolar range; this is the first reported berberine based Tdp1 inhibitor. A structure–activity relationship analysis revealed the importance of bromine substitution in the 12-position on the tetrahydroberberine scaffold. Furthermore, it was shown that the addition of a sulfonate group containing a polyfluoroaromatic moiety at position 9 leads to increased potency, while most of the derivatives containing an alkyl fragment at the same position were not active. According to the molecular modeling, the bromine atom in position 12 forms a hydrogen bond to histidine 493, a key catalytic residue. The cytotoxic effect of topotecan, a clinically important topoisomerase 1 inhibitor, was doubled in the cervical cancer HeLa cell line by derivatives 11g and 12g; both displayed low toxicity without topotecan. Derivatives 11g and 12g can therefore be used for further development to sensitize the action of clinically relevant Topo1 inhibitors.


2020 ◽  
Vol 110 (5) ◽  
pp. 989-998
Author(s):  
Cláudio M. Vrisman ◽  
Loïc Deblais ◽  
Yosra A. Helmy ◽  
Reed Johnson ◽  
Gireesh Rajashekara ◽  
...  

Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.


Sign in / Sign up

Export Citation Format

Share Document