scholarly journals Molecular Profiling of Ovine Prion Diseases by Using Thermolysin-Resistant PrPSc and Endogenous C2 PrP Fragments

2007 ◽  
Vol 81 (19) ◽  
pp. 10532-10539 ◽  
Author(s):  
Jonathan P. Owen ◽  
Helen C. Rees ◽  
Ben C. Maddison ◽  
Linda A. Terry ◽  
Leigh Thorne ◽  
...  

ABSTRACT Disease-associated PrP fragments produced upon in vitro or in vivo proteolysis can provide significant insight into the causal strain of prion disease. Here we describe a novel molecular strain typing assay that used thermolysin digestion of caudal medulla samples to produce PrPres signatures on Western blots that readily distinguished experimental sheep bovine spongiform encephalopathy (BSE) from classical scrapie. Furthermore, the accumulation of such PrPres species within the cerebellum also appeared to be dependent upon the transmissible spongiform encephalopathy (TSE) strain, allowing discrimination between two experimental strains of scrapie and grouping of natural scrapie isolates into two profiles. The occurrence of endogenously produced PrP fragments, namely, glycosylated and unglycosylated C2, within different central nervous system (CNS) regions is also described; this is the first detailed description of such scrapie-associated fragments within a natural host. The advent of C2 fragments within defined CNS regions, compared between BSE and scrapie cases and also between two experimental scrapie strains, appeared to be largely dependent upon the TSE strain. The combined analyses of C2 fragments and thermolysin-resistant PrP species within caudal medulla, cerebellum, and spinal cord samples allowed natural scrapie isolates to be separated into four distinct molecular profiles: most isolates produced C2 and PrPres in all CNS regions, a second group lacked detectable cerebellar C2 fragments, one isolate lacked both cerebellar PrPres and C2, and a further isolate lacked detectable C2 within all three CNS regions and also lacked cerebellar PrPres. This CNS region-specific deposition of disease-associated PrP species may reflect the natural heterogeneity of scrapie strains in the sheep population in the United Kingdom.

2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Allison Kraus ◽  
Gregory J. Raymond ◽  
Brent Race ◽  
Katrina J. Campbell ◽  
Andrew G. Hughson ◽  
...  

ABSTRACT Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro, only some are transmissible and pathogenic in vivo. To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro. Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood. Here we have compared the combined effects of prion seeding and mutations of prion protein (PrP) on the structure and transmission properties of synthetic PrP aggregates. Our results highlight the influence of specific sequence features in the normally unstructured region of PrP that influence the infectious and neuropathogenic properties of PrP-derived aggregates.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1454
Author(s):  
Satish K. Nemani ◽  
Jennifer L. Myskiw ◽  
Lise Lamoureux ◽  
Stephanie A. Booth ◽  
Valerie L. Sim

The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.


1999 ◽  
Vol 342 (3) ◽  
pp. 605-613 ◽  
Author(s):  
Debbie B. BRIMACOMBE ◽  
Alan D. BENNETT ◽  
Fred S. WUSTEMAN ◽  
Andrew C. GILL ◽  
Janine C. DANN ◽  
...  

Certain polysulphated polyanions have been shown to have prophylactic effects on the progression of transmissible spongiform encephalopathy disease, presumably because they bind to prion protein (PrP). Until now, the difficulty of obtaining large quantities of native PrP has precluded detailed studies of these interactions. We have over-expressed murine recombinant PrP (recPrP), lacking its glycophosphoinositol membrane anchor, in modified mammalian cells. Milligram quantities of secreted, soluble and partially glycosylated protein were purified under non-denaturing conditions and the identities of mature-length aglycosyl recPrP and two cleavage fragments were determined by electrospray MS. Binding was assessed by surface plasmon resonance techniques using both direct and competitive ligand-binding approaches. recPrP binding to immobilized polyanions was enhanced by divalent metal ions. Polyanion binding was strong and showed complex association and dissociation kinetics that were consistent with ligand-directed recPrP aggregation. The differences in the binding strengths of recPrP to pentosan polysulphate and to other sulphated polyanions were found to parallel their in vivo anti-scrapie and in vitro anti-scrapie-specific PrP formation potencies. When recPrP was immobilized by capture on metal-ion chelates it was found, contrary to expectation, that the addition of polyanions promoted the dissociation of the protein.


2006 ◽  
Vol 87 (2) ◽  
pp. 471-477 ◽  
Author(s):  
S. J. Everest ◽  
L. Thorne ◽  
D. A. Barnicle ◽  
J. C. Edwards ◽  
H. Elliott ◽  
...  

Scrapie of sheep and goats is the most common prion disease (or transmissible spongiform encephalopathy, TSE) of mammals and aggregates of abnormal, proteinase-resistant prion protein (PrPSc) are found in all naturally occurring prion diseases. During active surveillance of British sheep for TSEs, 29 201 sheep brain stem samples were collected from abattoirs and analysed for the presence of PrPSc. Of these samples, 54 were found to be positive by using an ELISA screening test, but 28 of these could not be confirmed initially by immunohistochemistry. These unconfirmed or atypical cases were generally found in PrP genotypes normally associated with relative resistance to clinical scrapie and further biochemical analysis revealed that they contained forms of PrPSc with a relatively protease-sensitive amyloid core, some resembling those of Nor98 scrapie. The presence of these atypical forms of protease-resistant PrP raises concerns that some TSE disorders of PrP metabolism previously may have escaped identification in the British sheep population.


2007 ◽  
Vol 81 (24) ◽  
pp. 13794-13800 ◽  
Author(s):  
Sabrina Cronier ◽  
Vincent Beringue ◽  
Anne Bellon ◽  
Jean-Michel Peyrin ◽  
Hubert Laude

ABSTRACT Transmissible spongiform encephalopathies (TSE) arise as a consequence of infection of the central nervous system by prions and are incurable. To date, most antiprion compounds identified by in vitro screening failed to exhibit therapeutic activity in animals, thus calling for new assays that could more accurately predict their in vivo potency. Primary nerve cell cultures are routinely used to assess neurotoxicity of chemical compounds. Here, we report that prion strains from different species can propagate in primary neuronal cultures derived from transgenic mouse lines overexpressing ovine, murine, hamster, or human prion protein. Using this newly developed cell system, the activity of three generic compounds known to cure prion-infected cell lines was evaluated. We show that the antiprion activity observed in neuronal cultures is species or strain dependent and recapitulates to some extent the activity reported in vivo in rodent models. Therefore, infected primary neuronal cultures may be a relevant system in which to investigate the efficacy and mode of action of antiprion drugs, including toward human transmissible spongiform encephalopathy agents.


2009 ◽  
Vol 83 (23) ◽  
pp. 12552-12558 ◽  
Author(s):  
L. A. Terry ◽  
L. Howells ◽  
J. Hawthorn ◽  
J. C. Edwards ◽  
S. J. Moore ◽  
...  

ABSTRACT The role of blood in the iatrogenic transmission of transmissible spongiform encephalopathy (TSE) or prion disease has become an increasing concern since the reports of variant Creutzfeldt-Jakob disease (vCJD) transmission through blood transfusion from humans with subclinical infection. The development of highly sensitive rapid assays to screen for prion infection in blood is of high priority in order to facilitate the prevention of transmission via blood and blood products. In the present study we show that PrPsc, a surrogate marker for TSE infection, can be detected in cells isolated from the blood from naturally and experimentally infected sheep by using a rapid ligand-based immunoassay. In sheep with clinical disease, PrPsc was detected in the blood of 55% of scrapie agent-infected animals (n = 80) and 71% of animals with bovine spongiform encephalopathy (n = 7). PrPsc was also detected several months before the onset of clinical signs in a subset of scrapie agent-infected sheep, followed from 3 months of age to clinical disease. This study confirms that PrPsc is associated with the cellular component of blood and can be detected in preclinical sheep by an immunoassay in the absence of in vitro or in vivo amplification.


2003 ◽  
Vol 77 (9) ◽  
pp. 5499-5502 ◽  
Author(s):  
Byron Caughey ◽  
Lynne D. Raymond ◽  
Gregory J. Raymond ◽  
Laura Maxson ◽  
Jay Silveira ◽  
...  

ABSTRACT Inhibition of the accumulation of protease-resistant prion protein (PrP-res) is a prime strategy in the development of potential transmissible spongiform encephalopathy (TSE) therapeutics. Here we show that curcumin (diferoylmethane), a major component of the spice turmeric, potently inhibits PrP-res accumulation in scrapie agent-infected neuroblastoma cells (50% inhibitory concentration, ∼10 nM) and partially inhibits the cell-free conversion of PrP to PrP-res. In vivo studies showed that dietary administration of curcumin had no significant effect on the onset of scrapie in hamsters. Nonetheless, other studies have shown that curcumin is nontoxic and can penetrate the brain, properties that give curcumin advantages over inhibitors previously identified as potential prophylactic and/or therapeutic anti-TSE compounds.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Perike Srikanth ◽  
Andrielle E Capote ◽  
Alsina Katherina M ◽  
Benjamin Levin ◽  
...  

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated prevalence in the U.S.of 6.1 million. AF increases the risk of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. We have recently identified protein phosphatase 1 subunit 12c (PPP1R12C) as a key molecule targeting myosin light-chain phosphorylation in AF. Objective: We hypothesize that the overexpression of PPP1R12C causes hypophosphorylation of atrial myosin light-chain 2 (MLC2a), thereby decreasing atrial contractility in AF. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluate the role of the PP1c-PPP1R12C interaction in MLC2a de-phosphorylation, we utilized Western blots, co-immunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A), PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, associated with a reduction in atrial contractility and an increase in AF inducibility. All these discoveries suggest that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


Sign in / Sign up

Export Citation Format

Share Document