scholarly journals Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ–ACBD3 Interaction

2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Xia Xiao ◽  
Xiaobo Lei ◽  
Zhenzhen Zhang ◽  
Yijie Ma ◽  
Jianli Qi ◽  
...  

ABSTRACT Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites. IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular network of enterovirus replication.

Author(s):  
Jennifer J Wood ◽  
Ian J White ◽  
Jason Mercer

AbstractThe replication and assembly of vaccinia virus (VACV), the prototypic poxvirus, occurs exclusively in the cytoplasm of host cells. While the role of cellular cytoskeletal components in these processes remains poorly understood, vimentin - a type III intermediate filament - has been shown to associate with viral replication sites and to be incorporated into mature VACV virions. Here we employed chemical and genetic approaches to further investigate the role of vimentin during the VACV lifecycle. The collapse of vimentin filaments, using acrylamide, was found to inhibit VACV infection at the level of genome replication, intermediate- and late- gene expression. However, we found that CRISPR-mediated knockout of vimentin did not impact VACV replication. Combining these tools, we demonstrate that acrylamide treatment results in the formation of antiviral granules (AVGs) known to mediate translational inhibition of many viruses. We conclude that vimentin is dispensable for poxvirus replication and assembly and that acrylamide, as a potent inducer of AVGs during VACV infection, serves to bolster cell’s antiviral response to poxvirus infection.Summary StatementAcrylamide inhibits poxvirus replication by inducing anti-viral granules and blocking translation. This inhibition is independent of the effect of acrylamide on vimentin filaments which were found to be dispensable for viral replication and assembly.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 473 ◽  
Author(s):  
Mei-Ling Cheng ◽  
Kun-Yi Chien ◽  
Chien-Hsueh Lai ◽  
Guan-Jie Li ◽  
Jui-Fen Lin ◽  
...  

Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.


2019 ◽  
Vol 47 (17) ◽  
pp. 9296-9312 ◽  
Author(s):  
Catherine Kendall ◽  
Henna Khalid ◽  
Marietta Müller ◽  
Dominic H Banda ◽  
Alain Kohl ◽  
...  

Abstract Chikungunya virus (CHIKV) is a re-emerging, pathogenic Alphavirus transmitted to humans by Aedes spp. mosquitoes. We have mapped the RNA structure of the 5′ region of the CHIKV genome using selective 2′-hydroxyl acylation analysed by primer extension (SHAPE) to investigate intramolecular base-pairing at single-nucleotide resolution. Taking a structure-led reverse genetic approach, in both infectious virus and sub-genomic replicon systems, we identified six RNA replication elements essential to efficient CHIKV genome replication - including novel elements, either not previously analysed in other alphaviruses or specific to CHIKV. Importantly, through a reverse genetic approach we demonstrate that the replication elements function within the positive-strand genomic copy of the virus genome, in predominantly structure-dependent mechanisms during efficient replication of the CHIKV genome. Comparative analysis in human and mosquito-derived cell lines reveal that a novel element within the 5′UTR is essential for efficient replication in both host systems, while those in the adjacent nsP1 encoding region are specific to either vertebrate or invertebrate host cells. In addition to furthering our knowledge of fundamental aspects of the molecular virology of this important human pathogen, we foresee that results from this study will be important for rational design of a genetically stable attenuated vaccine.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Cristina M. Dorobantu ◽  
Lucian Albulescu ◽  
Heyrhyoung Lyoo ◽  
Mirjam van Kampen ◽  
Raffaele De Francesco ◽  
...  

ABSTRACT Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous “replication organelles” (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses. Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate “replication organelles” (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous “replication organelles” (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses.


2017 ◽  
Vol 45 (02) ◽  
pp. 299-317 ◽  
Author(s):  
Ya Wen Chiang ◽  
Chia Feng Yeh ◽  
Ming Hong Yen ◽  
Chi Yu Lu ◽  
Lien Chai Chiang ◽  
...  

Enterovirus 71 (EV71) infection can cause airway symptoms, brainstem encephalitis, neurogenic shock, and neurogenic pulmonary edema with high morbidity and mortality. There is no proven therapeutic modality. Flos Farfarae is the dried flower bud of Tussilago farfara L. that has been used to manage airway illnesses for thousands of years. It has neuro-protective activity and has been used to manage neuro-inflammatory diseases. However, it is unknown whether Flos Farfarae has activity against EV71-induced neuropathy. The current study used both human foreskin fibroblast (CCFS-1/KMC) and human rhabdomyosarcoma (RD) cell lines to test the hypothesis that a hot water extract of Flos Farfarae could effectively inhibit EV71 infection. The authenticity of Flos Farfarae was confirmed by HPLC-UV fingerprint. Through plaque reduction assays and flow cytometry, Flos Farfarae was found to inhibit EV71 infection ([Formula: see text]). Inhibition of viral replication and protein expression were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR), and western blot, respectively. The estimated IC[Formula: see text]s were 106.3[Formula: see text][Formula: see text]g/mL in CCFS-1/KMC, and 15.0[Formula: see text][Formula: see text]g/mL in RD cells. Therefore, Flos Farfarae could be beneficial to inhibit EV71 infection by preventing viral replication and structural protein expression.


2015 ◽  
Vol 89 (8) ◽  
pp. 4527-4538 ◽  
Author(s):  
Pei-Yi Su ◽  
Ya-Fang Wang ◽  
Sheng-Wen Huang ◽  
Yu-Chih Lo ◽  
Ya-Hui Wang ◽  
...  

ABSTRACTBecause the pathogenesis of enterovirus 71 (EV71) remains mostly ambiguous, identifying the factors that mediate viral binding and entry to host cells is indispensable to ultimately uncover the mechanisms that underlie virus infection and pathogenesis. Despite the identification of several receptors/attachment molecules for EV71, the binding, entry, and infection mechanisms of EV71 remain unclear. Herein, we employed glycoproteomic approaches to identify human nucleolin as a novel binding receptor for EV71. Glycoproteins purified by lectin chromatography from the membrane extraction of human cells were treated with sialidase, followed by immunoprecipitation with EV71 particles. Among the 16 proteins identified by tandem mass spectrometry analysis, cell surface nucleolin attracted our attention. We found that EV71 interacted directly with nucleolin via the VP1 capsid protein and that an antinucleolin antibody reduced the binding of EV71 to human cells. In addition, the knockdown of cell surface nucleolin decreased EV71 binding, infection, and production in human cells. Furthermore, the expression of human nucleolin on the cell surface of a mouse cell line increased EV71 binding and conferred EV71 infection and production in the cells. These results strongly indicate that human nucleolin can mediate EV71 binding to and infection of cells. Our findings also demonstrate that the use of glycoproteomic approaches is a reliable methodology to discover novel receptors for pathogens.IMPORTANCEOutbreaks of EV71 have been reported in Asia-Pacific countries and have caused thousands of deaths in young children during the last 2 decades. The discovery of new EV71-interacting molecules to understand the infection mechanism has become an emergent issue. Hence, this study uses glycoproteomic approaches to comprehensively investigate the EV71-interacting glycoproteins. Several EV71-interacting glycoproteins are identified, and the role of cell surface nucleolin in mediating the attachment and entry of EV71 is characterized and validated. Our findings not only indicate a novel target for uncovering the EV71 infection mechanism and anti-EV71 drug discovery but also provide a new strategy for virus receptor identification.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Isabel Fernández de Castro ◽  
Paula F. Zamora ◽  
Laura Ooms ◽  
José Jesús Fernández ◽  
Caroline M.-H. Lai ◽  
...  

ABSTRACTMost viruses that replicate in the cytoplasm of host cells form neo-organelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral replication proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Despite the importance of inclusion complexes in viral replication, there are key gaps in the knowledge of how these organelles form and mediate their functions. Reoviruses are nonenveloped, double-stranded RNA (dsRNA) viruses that serve as tractable experimental models for studies of dsRNA virus replication and pathogenesis. Following reovirus entry into cells, replication occurs in large cytoplasmic structures termed inclusions that fill with progeny virions. Reovirus inclusions are nucleated by viral nonstructural proteins, which in turn recruit viral structural proteins for genome replication and particle assembly. Components of reovirus inclusions are poorly understood, but these structures are generally thought to be devoid of membranes. We used transmission electron microscopy and three-dimensional image reconstructions to visualize reovirus inclusions in infected cells. These studies revealed that reovirus inclusions form within a membranous network. Viral inclusions contain filled and empty viral particles and microtubules and appose mitochondria and rough endoplasmic reticulum (RER). Immunofluorescence confocal microscopy analysis demonstrated that markers of the ER and ER-Golgi intermediate compartment (ERGIC) codistribute with inclusions during infection, as does dsRNA. dsRNA colocalizes with the viral protein σNS and an ERGIC marker inside inclusions. These findings suggest that cell membranes within reovirus inclusions form a scaffold to coordinate viral replication and assembly.IMPORTANCEViruses alter the architecture of host cells to form an intracellular environment conducive to viral replication. This step in viral infection requires the concerted action of viral and host components and is potentially vulnerable to pharmacological intervention. Reoviruses form large cytoplasmic replication sites called inclusions, which have been described as membrane-free structures. Despite the importance of inclusions in the reovirus replication cycle, little is known about their formation and composition. We used light and electron microscopy to demonstrate that reovirus inclusions are membrane-containing structures and that the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment interact closely with these viral organelles. These findings enhance our understanding of the cellular machinery usurped by viruses to form inclusion organelles and complete an infectious cycle. This information, in turn, may foster the development of antiviral drugs that impede this essential viral replication step.


2009 ◽  
Vol 37 (02) ◽  
pp. 383-394 ◽  
Author(s):  
Kung-Kai Kuo ◽  
Jung-San Chang ◽  
Kuo-Chih Wang ◽  
Lien-Chai Chiang

Human infection by enterovirus type 71 (EV71) can cause life-threatening meningo-encephalitis. Currently, there is no effective anti-EV71 therapy available. Since EV71 infection commonly involves skin lesions, we tested our hypothesis that water extract of Glycyrrhiza uralensis (G. uralensis) could inhibit the cytopathic effects of EV71 in a human foreskin cell line by using an XTT-based method. Our results showed that the water extract of G. uralensis at 3,000 μg/ml has only 30% cytotoxicity on host cells, and furthermore, that the water extract of G. uralensis at 0.1 μg/ml could effectively protect host cells against EV71 infection (p < 0.0001). The half maximal inhibitory concentration (IC50) was 0.056 μg/ml with a selective index greater than 50,000. The water extract of G. uralensis exerted its effects not only by preventing viral attachment (p < 0.0001), but also by inhibiting the penetration of the virus (p < 0.0001). EV71 infection caused cells to produce significant amounts of IFN-β (p = 0.0003). However, the anti-EV71 activity of the water extract of G. uralensis was not mediated by IFN. In conclusion, the water extract of G. uralensis possesses potent anti-EV71 effects with less cytotoxicity. Its low IC50 and high 50% cytotoxic concentration (CC50) values suggest that it is a promising anti-EV71 agent.


2021 ◽  
Author(s):  
Laura A. St Clair ◽  
Stephanie A. Mills ◽  
Elena Lian ◽  
Paul S. Soma ◽  
Aritra Nag ◽  
...  

During infection with dengue viruses (DENVs), the lipid landscape within host cells is significantly altered to assemble membrane platforms that support viral replication and particle assembly. Fatty acyl-CoAs are key intermediates in the biosynthesis of complex lipids that form these membranes. They also function as key signaling lipids in the cell. Here, we carried out loss of function studies on acyl-CoA thioesterases (ACOTs), a family of enzymes that hydrolyze fatty acyl-CoAs to free fatty acids and coenzyme A, to understand their influence on the lifecycle of DENVs. Loss of function of the type I ACOTs 1 (cytoplasmic) and 2 (mitochondrial) together significantly increased DENV serotype 2 (DENV2) viral replication and infectious particle release. However, isolated knockdown of mitochondrial ACOT2 significantly decreased DENV2 protein translation, genome replication, and infectious virus release. Furthermore, loss of ACOT7 function, a mitochondrial type II ACOT, similarly suppressed DENV2. As ACOT1 and ACOT2 are splice variants, these data suggest that location (cytosol and mitochondria, respectively) rather than function of these proteins may account for the differences in DENV2 infection phenotype. Additionally, loss of mitochondrial ACOT2 and ACOT7 expression also altered the expression of several ACOTs located in multiple organelle compartments within the cell highlighting a complex relationship between ACOTs in the DENV2 virus lifecycle.


Author(s):  
Hui Li ◽  
Wenqian Li ◽  
Shuangling Zhang ◽  
Manman Qiu ◽  
Zhuoran Li ◽  
...  

Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection.


Sign in / Sign up

Export Citation Format

Share Document