scholarly journals Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from Latency in CD4 + T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving Suppressive Combined Antiretroviral Therapy

2016 ◽  
Vol 90 (21) ◽  
pp. 9712-9724 ◽  
Author(s):  
Bingfeng Liu ◽  
Fan Zou ◽  
Lijuan Lu ◽  
Cancan Chen ◽  
Dalian He ◽  
...  

ABSTRACT Despite the advent of combined antiretroviral therapy (cART), the persistence of viral reservoirs remains a major barrier to curing human immunodeficiency virus type 1 (HIV-1) infection. Recently, the shock and kill strategy, by which such reservoirs are eradicated following reactivation of latent HIV-1 by latency-reversing agents (LRAs), has been extensively practiced. It is important to reestablish virus-specific and reliable immune surveillance to eradicate the reactivated virus-harboring cells. In this report, we attempted to reach this goal by using newly developed chimeric antigen receptor (CAR)-T cell technology. To generate anti-HIV-1 CAR-T cells, we connected the single-chain variable fragment of the broadly neutralizing HIV-1-specific antibody VRC01 to a third-generation CAR moiety as the extracellular and intracellular domains and subsequently transduced this into primary CD8 + T lymphocytes. We demonstrated that the resulting VC-CAR-T cells induced T cell-mediated cytolysis of cells expressing HIV-1 Env proteins and significantly inhibited HIV-1 rebound after removal of antiviral inhibitors in a viral infectivity model in cell culture that mimics the termination of the cART in the clinic. Importantly, the VC-CAR-T cells also effectively induced the cytolysis of LRA-reactivated HIV-1-infected CD4 + T lymphocytes isolated from infected individuals receiving suppressive cART. Our data demonstrate that the special features of genetically engineered CAR-T cells make them a particularly suitable candidate for therapeutic application in efforts to reach a functional HIV cure. IMPORTANCE The presence of latently infected cells remains a key obstacle to the development of a functional HIV-1 cure. Reactivation of dormant viruses is possible with latency-reversing agents, but the effectiveness of these compounds and the subsequent immune response require optimization if the eradication of HIV-1-infected cells is to be achieved. Here, we describe the use of a chimeric antigen receptor, comprised of T cell activation domains and a broadly neutralizing antibody, VRC01, targeting HIV-1 to treat the infected cells. T cells expressing this construct exerted specific cytotoxic activity against wild-type HIV-1-infected cells, resulting in a dramatic reduction in viral rebound in vitro , and showed persistent effectiveness against reactivated latently infected T lymphocytes from HIV-1 patients receiving combined antiretroviral therapy. The methods used in this study constitute an improvement over existing CD4-based CAR-T technology and offer a promising approach to HIV-1 immunotherapy.

2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5891-5891
Author(s):  
Jacob Halum Basham ◽  
Terrence L. Geiger

Abstract Chimeric antigen receptor-modified T lymphocytes (CART cells) have shown benefit as an adjuvant immunotherapy in the treatment of B cell malignancies. This success of re-targeted T cells has not been extended to other hematologic malignancies. We have developed an immunotherapeutic approach to treat acute myeloid leukemia (AML) using CAR T cells re-directed against the myeloid-specific antigen CD33 (CART-33). CART-33 cells are potent and specific in eliminating AML cells in vitro and in vivo. Despite this, CART-33 cells have shown poor in vivo expansion and persistence in NOD-SCID IL2rγ (-/-) (NSG) AML xenograft models. To address the reason for this, we assessed the impact of AML-expressed programmed death ligands 1 & 2 (PD-L1/2) on CART-33 cell activity. PD-L1 inhibits T cell functions upon binding PD-1, which is upregulated with T cell activation. Less is known about PD-L2's effect. Interferon-gamma (IFN-γ), a primary effector cytokine secreted by CD4+ and CD8+ effector T cells, is a known potent inducer of PD-L1 on AML blasts. Using AML cell lines U937, Oci-AML3, CMK, and MV4-11 we show that IFN-γ, TNF-α, and activated CART-33 supernatant can induce up-regulation of PD-L1 and PD-L2 on AML. IFN-γ and TNF-α synergize strongly in up-regulating PD-1 ligands on AML. The kinetics and induction of PD-L2 are distinct from that of PD-L1. Although PD-L1 is well documented to suppress T cell function via ligation of T cell expressed PD-1, induction of PD-L1/L2 had no effect on the cytolytic activity of CART-33 cells against AML in short term (<48 h) cultures. Paradoxically, 24 hr pre-treatment of AML with either IFN-γ or CART-33 supernatant increased AML susceptibility to killing by CART-33 cells despite elevated expression of PD-L1/L2 by AML. Our results highlight the regulatory complexity of AML cytolysis by re-targeted T lymphocytes, and argue that tumor-expressed PD-L1 and PD-L2 impacts the sustainability, but not short-term killing activity, of adoptively transferred CAR T cells in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2020 ◽  
Vol 38 (17) ◽  
pp. 1938-1950 ◽  
Author(s):  
Nirali N. Shah ◽  
Steven L. Highfill ◽  
Haneen Shalabi ◽  
Bonnie Yates ◽  
Jianjian Jin ◽  
...  

PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen, represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric antigen receptor (CAR) T cells. PATIENTS AND METHODS We conducted a single-center, phase I, 3 + 3 dose-escalation trial with a large expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory CD22+ malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives included efficacy, CD22 CAR T-cell persistence, and cytokine profiling. RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were minimal and transient. Hemophagocytic lymphohistiocytosis–like manifestations were seen in 19/58 (32.8%) of subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months). Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1 to 6.5 months). Thirteen participants proceeded to stem-cell transplantation. CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy.


2019 ◽  
Vol 14 (1) ◽  
pp. 60-69
Author(s):  
Manxue Fu ◽  
Liling Tang

Background: Chimeric Antigen Receptor (CAR) T cell immunotherapy, as an innovative method for tumor immunotherapy, acquires unprecedented clinical outcomes. Genetic modification not only provides T cells with the antigen-binding function but also endows T cells with better immunological functions both in solid and hematological cancer. However, the CAR T cell therapy is not perfect because of several reasons, such as tumor immune microenvironment, and autologous limiting factors of CAR T cells. Moreover, the safety of CAR T cells should be improved.Objective:Recently many patents and publications have reported the importance of CAR T cell immunotherapy. Based on the patents about CAR T cell immunotherapy, we conclude some methods for designing the CAR which can provide information to readers.Methods:In this review, we collect recent patents and publications, summarize some specific antigens for oncotherapy from patents and enumerate some approaches to conquering immunosuppression and reinforcing the immune response of CAR T cells. We also sum up some strategies for improving the safety of CAR T cell immunotherapy.Results:CAR T cell immunotherapy as a neotype cellular immunotherapy has been proved effective in oncotherapy and authorized by FDA. Improvements in CAR designing enhance functions of CAR T cells.Conclusion:This review, summarizing antigens and approaches to overcome defects of CAR T cell immunotherapy from patents and publications, might contribute to a broad readership.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yi Zhang

Immunotherapy, especially based on chimeric antigen receptor (CAR) T cells, has achieved prominent success in the treatment of hematological malignancies. However, approximately 30-50% of patients will have disease relapse following remission after receiving CD19-targeting CAR-T cells, with failure of maintaining a long-term effect. Mechanisms underlying CAR-T therapy inefficiency consist of loss or modulation of target antigen and CAR-T cell poor persistence which mostly results from T cell exhaustion. The unique features and restoration strategies of exhausted T cells (Tex) have been well described in solid tumors. However, the overview associated with CAR-T cell exhaustion is relatively rare in hematological malignancies. In this review, we summarize the characteristics, cellular, and molecular mechanisms of Tex cells as well as approaches to reverse CAR-T cell exhaustion in hematological malignancies, providing novel strategies for immunotherapies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2604-2604 ◽  
Author(s):  
Stephan A. Grupp ◽  
David L Porter ◽  
David T Teachey ◽  
David M. Barrett ◽  
Anne Chew ◽  
...  

Abstract Abstract 2604 We previously reported on CART19 cells expressing a chimeric antigen receptor (CAR) with intracellular activation and costimulatory domains. Infusion of these cells results in 100 to 100,000× in vivo proliferation, tumor lysis syndrome followed by durable antitumor activity, and prolonged persistence in pts with B cell tumors. Here we report that in vivo proliferation of CART19 cells and potent anti-tumor activity is associated with CRS, leading to hemophagocytic lymphohistiocytosis (HLH), also termed MAS. We propose that MAS/HLH is a unique biomarker that is associated with and may be required for potent anti-tumor activity. Autologous T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3-zeta, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into ALL or CLL pts with persistent disease after 2–8 prior treatments. CART19 anti ALL activity was also modeled in a xenograft mouse model with high level of human ALL/human T cell engraftment and simultaneous detection of CAR T cells and ALL using 2-color bioluminescent imaging. We describe updated results of 10 pts who received CART19 cells elsewhere at ASH (Porter, et al), including 9 pts with CLL and 1 pediatric pt with relapsed refractory ALL. 6/9 evaluable pts had a CR or PR, including 4 sustained CRs. While there was no acute infusional toxicity, all responding pts also developed CRS. All had high fevers, as well as grade 3 or 4 hypotension/hypoxia. CRS preceded peak blood expression of CART19 cells, and then increased in intensity until the CART19 cell peak (D10–31 after infusion). The ALL pt experienced the most significant toxicity, with grade 4 hypotension and respiratory failure. Steroid therapy on D6 resulted in no improvement. On D9, noting high levels of TNFa and IL-6 (peak increases above baseline: IFNg at 6040x; IL-6 at 988x; IL-2R at 56x, IL-2 at 163× and TNFa at 17x), we administered TNFa and IL-6 antagonists entanercept and toc. This resulted in resolution of fever and hypotension within 12hr and a rapid wean from ventilator support to room air. These interventions had no apparent impact on CART19 cell expansion or efficacy: peak of CAR T cells (2539 CAR+ cells/uL; 77% of CD3 cells by flow) occurred on D11, and D23 bone marrow showed CR with negative MRD, compared to her initial on-study marrow which showed 65% blasts. Although she had no history of CNS ALL, spinal fluid showed detectable CART19 cells (21 lymphs/mcL; 78% CAR+). At 4mo post infusion, this pt remains in CR, with 17 CART19 cells/uL in the blood and 31% CAR+ CD3 cells in the marrow. Clinical assessment of subsequent responding patients shows all had evidence of MAS/HLH including dramatic elevations of ferritin and histologic evidence of HLH. Peak ferritin levels range from 44,000 to 605,000, preceding and continuing with peak T cell proliferation. Other consistent findings include rapid onset hepatosplenomegaly unrelated to disease and moderate DIC. Subsequently, 3 CLL patients have also been treated with toc, also with prompt and striking resolution of high fevers, hypotension and hypoxia. 1 received toc on D10 and achieved a CR accompanied by CART19 expansion. 1 had rapid resolution of CRS following toc administration on day 9 and follow up for response is too short. A 3rd CLL pt received toc on D3 for early fevers and had no CART-19 proliferation and no response. To model the timing of cytokine blockade, xenografts using bioluminescent primary pediatric ALL were established and then treated with extra cells from the clinical manufacture. The CART19 cells proliferated and resulted in prolonged survival. Cytokine blockade prior to T cell infusion with toc and/or etanercept abrogated disease control with less in vivo proliferation of infused CART19 cells, confirming the result seen in the one pt given early toc (D3). The optimal time and threshold to trigger cytokine blockade is currently being tested in these models. CART19 T cells can produce massive in-vivo expansion, long-term persistence, and anti-tumor efficacy, but can also induce significant CRS with features suggestive of MAS/HLH that responds rapidly to cytokine blockade. Given prior to initiation of significant CART19 proliferation, blockade of TNFa and/or IL-6 may interfere with proliferation and effector function, but if given at a point where cell proliferation is underway, toc may ameliorate the symptoms that we have observed correlate with robust clinical responses. Disclosures: Off Label Use: tocilizumab for cell therapy toxicity. Levine:University of Pennsylvania: financial interest due to intellectual property and patents in the field of cell and gene therapy. Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight Patents & Royalties; TxCell: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kalos:University of Pennsylvania: Patents & Royalties. June:Novartis: Research Funding, institution owned patents have been licensed by Novartis, institution owned patents have been licensed by Novartis Patents & Royalties.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 12-12 ◽  
Author(s):  
Oladapo O. Yeku ◽  
Terence Purdon ◽  
David R. Spriggs ◽  
Renier J. Brentjens

12 Background: Immune escape via downregulation of tumor associated antigens (TAAs) is an important mechanism of resistance to Chimeric Antigen Receptor (CAR) T cell therapy. Particularly in solid tumor malignancies where antigen expression could be heterogeneous, the risk of antigen-low or antigen-negative relapse is significantly high. One strategy to overcome this limitation is to reengineer CAR T cells to engage other arms of the immune system such as endogenous cytotoxic T cells and dendritic cells (DC) to broaden the antitumor response beyond the TAA targeted by CAR T cells. This could be achieved by co-modifying CAR T cells with Interleukin-12 (IL-12). IL-12 is a proinflammatory cytokine produced by DCs, and macrophages, and has been shown to promote maturation of DCs and increase T-cell proliferation. We hypothesized that CAR T cells genetically engineered to constitutively secrete IL-12 will be efficacious against Muc16ecto low (MLo) and Muc16ecto high (MHi) heterogeneous tumors in a syngeneic mouse model of ovarian peritoneal carcinomatosis. Methods: ID8 mouse ovarian cancer cells with either low endogenous Muc16ecto or transduced to express high levels of Muc16ecto were generated. Mouse T cells were transduced with plasmids encoding second generation Muc16 or Muc16/IL-12-directed CARs. C57BL/6 mice were inoculated i.p with tumor cells and subsequently treated with CAR T cells. Results: Second generation and IL-12 armored CAR T cells (4H1128?-IL12) were cytotoxic against both MLo and MHi cells in vitro. However, 4H1128?-IL12 were significantly more efficacious at killing both MLo and MHi cancer cells. In vivo, treatment with 4H1128?-IL12 led to significantly improved survival in mice inoculated with a 50:50 mix of MLo and MHi cells. Peritoneal washes performed on mice that succumbed to disease showed equivalent eradication of MLo and MHi. Treatment with 4H1128?-IL12 resulted in increased mature peritoneal DC’s (CD11b+ MHCII+). Finally, surviving mice from 4H1128?-IL12 cohorts were found to have increased T-cell receptor (TCR-β) productive clonality. Conclusions: IL-12-secreting CAR T cells are efficacious against tumors with low and heterogeneous antigen expression.


2015 ◽  
Vol 89 (18) ◽  
pp. 9631-9638 ◽  
Author(s):  
Victoria E. K. Walker-Sperling ◽  
Valerie J. Cohen ◽  
Patrick M. Tarwater ◽  
Joel N. Blankson

ABSTRACTThe “shock and kill” model of human immunodeficiency virus type 1 (HIV-1) eradication involves the induction of transcription of HIV-1 genes in latently infected CD4+T cells, followed by the elimination of these infected CD4+T cells by CD8+T cells or other effector cells. CD8+T cells may also be needed to control the spread of new infection if residual infected cells are present at the time combination antiretroviral therapy (cART) is discontinued. In order to determine the time frame needed for CD8+T cells to effectively prevent the spread of HIV-1 infection, we examined the kinetics of HIV transcription and virus release in latently infected cells reactivatedex vivo. Isolated resting, primary CD4+T cells from HIV-positive (HIV+) subjects on suppressive regimens were found to upregulate cell-associated HIV-1 mRNA within 1 h of stimulation and produce extracellular virus as early as 6 h poststimulation. In spite of the rapid kinetics of virus production, we show that CD8+T cells from 2 out of 4 viremic controllers were capable of effectively eliminating reactivated autologous CD4+cells that upregulate cell-associated HIV-1 mRNA. The results have implications for devising strategies to prevent rebound viremia due to reactivation of rare latently infected cells that persist after potentially curative therapy.IMPORTANCEA prominent HIV-1 cure strategy termed “shock and kill” involves the induction of HIV-1 transcription in latently infected CD4+T cells with the goal of elimination of these cells by either the cytotoxic T lymphocyte response or other immune cell subsets. However, the cytotoxic T cell response may also be required after curative treatment if residual latently infected cells remain. The kinetics of HIV-1 reactivation indicate rapid upregulation of cell-associated HIV-1 mRNA and a 5-h window between transcription and virus release. Thus, HIV-specific CD8+T cell responses likely have a very short time frame to eliminate residual latently infected CD4+T cells that become reactivated after discontinuation of antiretroviral therapy following potentially curative treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document