scholarly journals The Dynamic Interface of Viruses with STATs

2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Angela R. Harrison ◽  
Gregory W. Moseley

ABSTRACT Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32947 ◽  
Author(s):  
Alan C-Y. Hsu ◽  
Kristy Parsons ◽  
Ian Barr ◽  
Sue Lowther ◽  
Deborah Middleton ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1301
Author(s):  
Ioannis Kienes ◽  
Tanja Weidl ◽  
Nora Mirza ◽  
Mathias Chamaillard ◽  
Thomas A. Kufer

Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 367
Author(s):  
Katherine E. Havranek ◽  
Luke Adam White ◽  
Thomas C. Bisom ◽  
Jean-Marc Lanchy ◽  
J. Stephen Lodmell

In recent years, transcriptome profiling studies have identified changes in host splicing patterns caused by viral invasion, yet the functional consequences of the vast majority of these splicing events remain uncharacterized. We recently showed that the host splicing landscape changes during Rift Valley fever virus MP-12 strain (RVFV MP-12) infection of mammalian cells. Of particular interest, we observed that the host mRNA for Rio Kinase 3 (RIOK3) was alternatively spliced during infection. This kinase has been shown to be involved in pattern recognition receptor (PRR) signaling mediated by RIG-I like receptors to produce type-I interferon. Here, we characterize RIOK3 as an important component of the interferon signaling pathway during RVFV infection and demonstrate that RIOK3 mRNA expression is skewed shortly after infection to produce alternatively spliced variants that encode premature termination codons. This splicing event plays a critical role in regulation of the antiviral response. Interestingly, infection with other RNA viruses and transfection with nucleic acid-based RIG-I agonists also stimulated RIOK3 alternative splicing. Finally, we show that specifically stimulating alternative splicing of the RIOK3 transcript using a morpholino oligonucleotide reduced interferon expression. Collectively, these results indicate that RIOK3 is an important component of the mammalian interferon signaling cascade and its splicing is a potent regulatory mechanism capable of fine-tuning the host interferon response.


2017 ◽  
Author(s):  
Sultan Doğanay ◽  
Maurice Youzong Lee ◽  
Alina Baum ◽  
Jessie Peh ◽  
Sun-Young Hwang ◽  
...  

AbstractRIG-I-like receptors (RLRs) are cytoplasmic sensors of viral RNA that trigger the signaling cascade that leads to type I interferon (IFN) production. Transcriptional induction of RLRs by IFN is believed to play the role of positive feedback to further amplify viral sensing. We found that RLRs and several other IFN-stimulated genes (ISGs) are induced early in viral infection independent of IFN. Expression of these early ISGs requires IRF3/IRF7 and is highly correlated amongst them. Simultaneous detection of mRNA ofIFNB1, viral replicase, and ISGs revealed distinct populations ofIFNB1expressing and non-expressing cells which are highly correlated with the levels of early ISGs but are uncorrelated with IFN-dependent ISGs and viral gene expression. Individual expression of RLRs madeIFNB1expression more robust and earlier, suggesting a causal relation between levels of RLR and induction of IFN.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Ashish Kumar ◽  
Akhilesh Kumar ◽  
Harshad Ingle ◽  
Sushil Kumar ◽  
Richa Mishra ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that are crucial posttranscriptional regulators for host mRNAs. Recent studies indicate that miRNAs may modulate host response during RNA virus infection. However, the role of miRNAs in immune response against H5N1 infection is not clearly understood. In this study, we showed that expression of cellular miRNA miR-324-5p was downregulated in A549 cells in response to infection with RNA viruses H5N1, A/PR8/H1N1, and Newcastle disease virus (NDV) and transfection with poly(I·C). We found that miR-324-5p inhibited H5N1 replication by targeting the PB1 viral RNA of H5N1 in host cells. In addition, transcriptome analysis revealed that miR-324-5p enhanced the expression of type I interferon, type III interferon, and interferon-inducible genes (ISGs) by targeting CUEDC2, the negative regulator of the JAK1-STAT3 pathway. Together, these findings highlight that the miR-324-5p plays a crucial role in host defense against H5N1 by targeting viral PB1 and host CUEDC2 to inhibit H5N1 replication. IMPORTANCE Highly pathogenic influenza A virus (HPAIV) continues to pose a pandemic threat globally. From 2003 to 2017, H5N1 HPAIV caused 453 human deaths, giving it a high mortality rate (52.74%). This work shows that miR-324-5p suppresses H5N1 HPAIV replication by directly targeting the viral genome (thereby inhibiting viral gene expression) and cellular CUEDC2 gene, the negative regulator of the interferon pathway (thereby enhancing antiviral genes). Our study enhances the knowledge of the role of microRNAs in the cellular response to viral infection. Also, the study provides help in understanding how the host cells utilize small RNAs in controlling the viral burden.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


1986 ◽  
Vol 6 (2) ◽  
pp. 372-379
Author(s):  
R A Katz ◽  
B R Cullen ◽  
R Malavarca ◽  
A M Skalka

Avian retroviral mRNAs contain a long 5' untranslated leader of approximately 380 nucleotides. The leader includes sequences required for viral replication and three AUG codons which precede the AUG codon used for translational initiation of the gag and env genes. We have used sensitive, quantitative assays of viral gene transcription and translation to analyze the role of this mRNA leader in viral gene expression. By substituting segments from related viruses, we had previously shown that the endogenous avian provirus ev-1 contained a defective leader segment (B. R. Cullen, A. M. Skalka, and G. Ju, Proc. Natl. Acad. Sci. USA 80:2946-2950, 1983). The sequence analysis presented here, followed by comparison with the nondefective ev-2 endogenous provirus segment, identified the critical changes at nucleotides 4 and 7 upstream of the initiator AUG. These differences do not alter the most conserved nucleotides within the consensus sequence which precedes eucaryotic initiation codons, but lie within a nine-nucleotide region that is otherwise highly conserved among avian retrovirus strains. Analysis of a series of deletion mutants indicated that other sequences within the leader are also required for efficient expression. Characterization of the altered transcripts demonstrated that the presence of the defective ev-1 segment or the deletion of a ca. 200-nucleotide leader segment did not affect the steady-state level or splicing efficiency of these mRNAs. Thus, we conclude that the reduced expression of these mRNAs is due to a translational deficiency. These results indicate that specific leader sequences, other than the previously identified consensus nucleotides which precede eucaryotic AUG initiator codons, can influence eucaryotic gene translation.


2021 ◽  
Author(s):  
Eleonora Forte ◽  
Fatma Ayaloglu Butun ◽  
Christian Marinaccio ◽  
Matthew J. Schipma ◽  
Andrea Piunti ◽  
...  

HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27. Importance. HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document