“M1 macrophage polarization prevails in EBV infected children in an immuneregulatory environment”

2021 ◽  
Author(s):  
A. Moyano ◽  
N. M. Ferressini Gerpe ◽  
E. De Matteo ◽  
M. V. Preciado ◽  
P. Chabay

Macrophages can be polarized toward a proinflammatory phenotype (M1) (CD68+) or to an anti-inflammatory one (M2) (CD163+). Polarization can be triggered by cytokines such as IFN-γ for M1, or IL-10 and TGF-β, for M2. In the context of pediatric EBV infection, little is known about macrophage polarization in EBV primary or persistent infection. When studying tonsils of patients undergoing primary infection (PI), healthy carrier (HC), reactivation (R) and not infected (NI), M1 profile prevailed in all infection status. However, an increase in M2 cells was observed in those patients with broader expression of latency antigens, in particular EBNA2. Tonsils from primary infected patients showed an increased IL-10 expression, whereas, unexpectedly, TGF-β expression correlated with M1 marker. Furthermore, an inverse correlation was demonstrated between CD68 and IFN-γ. Therefore, in the context of asymptomatic infection in children, M1 macrophage polarization prevails, even in the presence of IL-10 and TGF-ꞵ immunomodulatory cytokines, and it might be independent from lymphomagenesis process. Our finding indicates that macrophages may have a significant plasticity in response to different types of extrinsic stimuli, and further studies are required to investigate M1 polarization under anti-inflammatory stimuli. Importance Most studies on EBV primary infection have been performed in adolescents and young adult populations with Infectious Mononucleosis (IM) in developed countries. Furthermore, studies related to macrophage polarization were assessed in EBV-associated lymphomas, but little is known about macrophage polarization in the context of primary infection at the site of viral entry and replication, the tonsils. Therefore, the aim of this study was to characterize macrophage response in children undergoing EBV primary or persistent infection, in order to enlighten the role of macrophages in viral pathogenesis, in a population with a high incidence of EBV-associated lymphomas in children younger than 10 years old. This study may contribute to explain, at least in part, the asymptomatic viral infection in children from an underdeveloped region, since M1 polarization pattern prevails, but in a regulatory environment.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Laura Dugo ◽  
Maria Giovanna Belluomo ◽  
Chiara Fanali ◽  
Marina Russo ◽  
Francesco Cacciola ◽  
...  

Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γfor M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-α production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis of latex beads. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-α to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-α production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves phagocytosis of apoptotic cells, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2012 ◽  
Vol 14 (4) ◽  
pp. 513-522 ◽  
Author(s):  
Edson Kiyotaka Ishizuka ◽  
Marcio José Ferreira ◽  
Lidiane Zito Grund ◽  
Erica Maria Martins Coutinho ◽  
Evilin Naname Komegae ◽  
...  

2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2022 ◽  
Vol 20 (4) ◽  
pp. 71-78
Author(s):  
E. S. Trofimova ◽  
M. V. Zykova ◽  
M. G. Danilets ◽  
A. A. Ligacheva ◽  
E. Yu. Sherstoboev ◽  
...  

Background. Antigen-presenting cells (APCs), especially macrophages, play an important role in the body defense against various pathogens. Their dysfunction and polarization are associated with most inflammatory and autoimmune diseases. The inflammatory process is regulated by activation and / or inhibition of genes differentially expressed by macrophages. Successful correction of inflammation leads firstly to elimination of inflammatory stimuli and then to remodeling and restoration of tissues and organs. It was experimentally confirmed that silvercontaining bionanocomposites based on natural humic substances (HS) obtained from coal of different origin, as well as initial matrices of these HS, are capable of activating pro- and anti-inflammatory properties of macrophages.Aim. To study cytotoxic, pyrogenic, and immunomodulatory properties (arginine balance) of initial HS samples and samples of silver nanoparticles ultradispersed in these HS matrices (HS-AgNPs) in the cell culture of peritoneal macrophages, as well as their effect on pro- and anti-inflammatory properties of APCs.Materials and methods. Cultural and biochemical methods were used in the study.Results. The study showed that the samples CHE-K, CHE-AgNPs, CHS-K, and CHP-K increased M1 macrophage polarization due to stimulation of the NO-synthase activity and inhibition of arginase. The samples CHI-K, CHIAgNPs, CHP-AgNPs, and CHS-AgNPs modulated an alternative M2 or M2-like state of macrophage activation. At the same time, HS are not cytotoxic at effective concentrations, and three out of four studied samples did not contain pyrogenic impurities.Conclusion. The use of HS and their silver-containing bionanocomposites, which have the ability to greatly affect the polarization of antigen-presenting cells, is a promising research area in correction of the inflammatory response for solving an important social and medical problem of treating chronic wounds. 


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 120 ◽  
Author(s):  
Lu Wang ◽  
Yutian Li ◽  
Xiaohong Wang ◽  
Peng Wang ◽  
Kobina Essandoh ◽  
...  

Macrophages are critical for regulation of inflammatory response during endotoxemia and septic shock. However, the mediators underlying their regulatory function remain obscure. Growth differentiation factor 3 (GDF3), a member of transforming growth factor beta (TGF-β) superfamily, has been implicated in inflammatory response. Nonetheless, the role of GDF3 in macrophage-regulated endotoxemia/sepsis is unknown. Here, we show that serum GDF3 levels in septic patients are elevated and strongly correlate with severity of sepsis and 28-day mortality. Interestingly, macrophages treated with recombinant GDF3 protein (rGDF3) exhibit greatly reduced production of pro-inflammatory cytokines, comparing to controls upon endotoxin challenge. Moreover, acute administration of rGDF3 to endotoxin-treated mice suppresses macrophage infiltration to the heart, attenuates systemic and cardiac inflammation with less pro-inflammatory macrophages (M1) and more anti-inflammatory macrophages (M2), as well as prolongs mouse survival. Mechanistically, GDF3 is able to activate Smad2/Smad3 phosphorylation, and consequently inhibits the expression of nod-like receptor protein-3 (NLRP3) in macrophages. Accordingly, blockade of Smad2/Smad3 phosphorylation with SB431542 significantly offsets rGDF3-mediated anti-inflammatory effects. Taken together, this study uncovers that GDF3, as a novel sepsis-associated factor, may have a dual role in the pathophysiology of sepsis. Acute administration of rGDF3 into endotoxic shock mice could increase survival outcome and improve cardiac function through anti-inflammatory response by suppression of M1 macrophage phenotype. However, constitutive high levels of GDF3 in human sepsis patients are associated with lethality, suggesting that GDF3 may promote macrophage polarization toward M2 phenotype which could lead to immunosuppression.


Biochimie ◽  
2016 ◽  
Vol 127 ◽  
pp. 121-132 ◽  
Author(s):  
Juan Xie ◽  
Xiaoqin Wu ◽  
Qun Zhou ◽  
Yang Yang ◽  
Yuanyao Tian ◽  
...  

2018 ◽  
Author(s):  
Kyuho Kang ◽  
Sung Ho Park ◽  
Keunsoo Kang ◽  
Lionel B. Ivashkiv

AbstractComplete polarization of macrophages towards an M1-like proinflammatory and antimicrobial state requires combined action of IFN-γ and LPS. Synergistic activation of canonical inflammatory NF-κB target genes by IFN-γ and LPS is well appreciated, but less is known about whether IFN-γ negatively regulates components of the LPS response, and how this affects polarization. A combined transcriptomic and epigenomic approach revealed that IFN-γ selectively abrogates LPS-induced feedback and select metabolic pathways by suppressing TLR4-mediated activation of gene enhancers. In contrast to superinduction of inflammatory genes via enhancers that harbor IRF sequences and bind STAT1, IFN-γ-mediated repression targeted enhancers with STAT sequences that bound STAT3. TLR4-activated IFN-γ-suppressed enhancers comprised two subsets distinguished by differential regulation of histone acetylation and recruitment of STAT3, CDK8 and cohesin, and were functionally inactivated by IFN-γ. These findings reveal that IFN-γ suppresses feedback inhibitory and metabolic components of the TLR response to achieve full M1 polarization, and provide insights into mechanisms by which IFN-γ selectively inhibits TLR4-induced transcription.


2020 ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background: NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results: NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-a production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-a to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-a production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion: It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves efferocytosis, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Meng ◽  
Cailing Lu ◽  
Bin Wu ◽  
Chunhua Lan ◽  
Laiming Mo ◽  
...  

The excessive M1 polarization of macrophages drives the occurrence and development of inflammatory diseases. The reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Taurine promotes for the balance of energy metabolism and the repair of inflammatory injury, preventing chronic diseases and complications. However, little is known about the mechanisms underlying the action of taurine modulating the macrophage polarization phenotype. In this study, we constructed a low-dose LPS/IFN-γ-induced M1 polarization model to simulate a low-grade pro-inflammatory process. Our results indicate that the taurine transporter TauT/SlC6A6 is upregulated at the transcriptional level during M1 macrophage polarization. The nutrient uptake signal on the membrane supports the high abundance of taurine in macrophages after taurine supplementation, which weakens the status of methionine metabolism, resulting in insufficient S-adenosylmethionine (SAM). The low availability of SAM is directly sensed by LCMT-1 and PME-1, hindering PP2Ac methylation. PP2Ac methylation was found to be necessary for M1 polarization, including the positive regulation of VDAC1 and PINK1. Furthermore, its activation was found to promote the elimination of mitochondria by macrophages via the mitophagy pathway for metabolic adaptation. Mechanistically, taurine inhibits SAM-dependent PP2Ac methylation to block PINK1-mediated mitophagy flux, thereby maintaining a high mitochondrial density, which ultimately hinders the conversion of energy metabolism to glycolysis required for M1. Our findings reveal a novel mechanism of taurine-coupled M1 macrophage energy metabolism, providing novel insights into the occurrence and prevention of low-grade inflammation, and propose that the sensing of taurine and SAM availability may allow communication to inflammatory response in macrophages.


Sign in / Sign up

Export Citation Format

Share Document