scholarly journals Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution

2009 ◽  
Vol 84 (3) ◽  
pp. 1656-1663 ◽  
Author(s):  
Victoria Kasprowicz ◽  
Yu-Hoi Kang ◽  
Michaela Lucas ◽  
Julian Schulze zur Wiesch ◽  
Thomas Kuntzen ◽  
...  

ABSTRACT Hepatitis C virus (HCV)-specific CD8+ T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127+ T cells is driven by viral variation.

2006 ◽  
Vol 81 (6) ◽  
pp. 2545-2553 ◽  
Author(s):  
Henry Radziewicz ◽  
Chris C. Ibegbu ◽  
Marina L. Fernandez ◽  
Kimberly A. Workowski ◽  
Kamil Obideen ◽  
...  

ABSTRACT The majority of people infected with hepatitis C virus (HCV) fail to generate or maintain a T-cell response effective for viral clearance. Evidence from murine chronic viral infections shows that expression of the coinhibitory molecule PD-1 predicts CD8+ antiviral T-cell exhaustion and may contribute to inadequate pathogen control. To investigate whether human CD8+ T cells express PD-1 and demonstrate a dysfunctional phenotype during chronic HCV infection, peripheral and intrahepatic HCV-specific CD8+ T cells were examined. We found that in chronic HCV infection, peripheral HCV-specific T cells express high levels of PD-1 and that blockade of the PD-1/PD-L1 interaction led to an enhanced proliferative capacity. Importantly, intrahepatic HCV-specific T cells, in contrast to those in the periphery, express not only high levels of PD-1 but also decreased interleukin-7 receptor alpha (CD127), an exhausted phenotype that was HCV antigen specific and compartmentalized to the liver, the site of viral replication.


2006 ◽  
Vol 87 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Wen Li ◽  
Jie Li ◽  
D. Lorne J. Tyrrell ◽  
Babita Agrawal

The majority of hepatitis C virus (HCV)-infected individuals become chronically infected, which can result in liver cirrhosis and hepatocellular carcinoma. Patients with chronic HCV are unable to prime and maintain vigorous T-cell responses, which are required to rid the body of the viral infection. Dendritic cells (DCs) are the professional antigen-presenting cells that probably play a dominant role in priming and maintaining vigorous T-cell responses in HCV infection. Furthermore, inefficient DC function may play an important role in HCV chronicity. In order to determine the effect of HCV NS3 and core proteins on phenotype and function of human DCs, recombinant adenoviral vectors containing NS3 or core genes were used to infect human DCs. HCV NS3- or core-protein expression in DCs was confirmed by Western blotting and immunofluorescence staining. The DCs expressing HCV NS3 or core proteins expressed several inflammatory cytokine mRNAs, had a normal phenotype and effectively stimulated allogeneic T cells, as well as T cells specific for another foreign antigen (tetanus toxoid). These findings are important for rational design of cellular-vaccine approaches for the immunotherapy of chronic HCV.


2021 ◽  
Vol 10 (2) ◽  
pp. 221
Author(s):  
Pil Soo Sung ◽  
Eui-Cheol Shin

Direct-acting antiviral agents (DAAs) that allow for rapid clearance of hepatitis C virus (HCV) may evoke immunological changes. Some cases of rapid de novo hepatocellular carcinoma (HCC) development or early recurrence of HCC after DAA treatment have been reported. During chronic HCV infection, natural killer (NK) cells exhibited a deviant functional phenotype with decreased production of antiviral cytokines and increased cytotoxicity; however, DAA treatment rapidly decreased their cytotoxic function. Effective DAA therapy also suppressed the intrahepatic activation of macrophages/monocytes. This was followed by a decrease in mucosal-associated invariant T (MAIT) cell cytotoxicity without normalization of cytokine production. Rapid changes in the phenotypes of NK and MAIT cells after DAA treatment may attenuate the cytotoxicity of these cells against cancer cells. Moreover, DAA treatment did not normalize the increased frequencies of regulatory T cells even after clearance of HCV infection. Thus, the persistently increased frequency of regulatory T cells may contribute to a local immunosuppressive milieu and hamper the clearance of cancer cells. This review will focus on recent studies describing the changes in innate and adaptive immune responses after DAA treatment in patients with chronic HCV infection in the context of de novo occurrence or recurrence of HCC.


2002 ◽  
Vol 76 (24) ◽  
pp. 12584-12595 ◽  
Author(s):  
Cheryl L. Day ◽  
Georg M. Lauer ◽  
Gregory K. Robbins ◽  
Barbara McGovern ◽  
Alysse G. Wurcel ◽  
...  

ABSTRACT Vigorous virus-specific CD4+ T-helper-cell responses are associated with successful control of hepatitis C virus (HCV) and other human viral infections, but the breadth and specificity of responses associated with viral containment have not been defined. To address this we evaluated the HCV-specific CD4+ T-helper-cell response in HCV antibody-positive persons who lack detectable plasma viremia, and compared this response to that in persons with chronic HCV infection. Peripheral blood mononuclear cells were stimulated with HCV proteins, followed by measurement of HCV-specific CD4+-T-cell responses to a comprehensive set of overlapping HCV peptides by intracellular gamma interferon production. In three persons with resolved HCV infection studied in detail, 13 to 14 epitopes were targeted, but none was recognized by all three. The 37 defined epitopes were predominantly distributed among the HCV proteins core, NS3, NS4, and NS5. In an expanded analysis of responses to these proteins in persons with resolved infection, an average of 10 epitopes was targeted, whereas in persons with chronic viremia never was more than one epitope targeted (P < 0.001). This comprehensive analysis of the breadth and specificity of HCV-specific T-helper-cell responses indicates that up to 14 viral epitopes can be simultaneously targeted by circulating virus-specific CD4+ T helper cells in a controlled human viral infection. Moreover, these data provide important parameters for evaluation of candidate HCV vaccines, and provide rationale for immunotherapy in chronic HCV infection.


2007 ◽  
Vol 81 (21) ◽  
pp. 11658-11668 ◽  
Author(s):  
Thomas Kuntzen ◽  
Joerg Timm ◽  
Andrew Berical ◽  
Lia L. Lewis-Ximenez ◽  
Andrea Jones ◽  
...  

ABSTRACT CD8+-T-cell responses play an important role in the containment and clearance of hepatitis C virus (HCV) infection, and an association between viral persistence and development of viral escape mutations has been postulated. While escape from CD8+-T-cell responses has been identified as a major driving force for the evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), a broader characterization of this relationship is needed in HCV infection. To determine the extent, kinetics, and driving forces of HCV sequence evolution, we sequenced the entire HCV genome longitudinally in four subjects monitored for up to 30 months after acute infection. For two subjects the transmission sources were also available. Of 53 total nonenvelope amino acid substitutions detected, a majority represented forward mutations away from the consensus sequence. In contrast to studies in HIV and SIV, however, only 11% of these were associated with detectable CD8+ T-cell responses. Interestingly, 19% of nonenvelope mutations represented changes toward the consensus sequence, suggesting reversion in the absence of immune pressure upon transmission. Notably, the rate of evolution of forward and reverse mutations correlated with the conservation of each residue, which is indicative of structural constraints influencing the kinetics of viral evolution. Finally, the rate of sequence evolution was observed to decline over the course of infection, possibly reflective of diminishing selection pressure by dysfunctional CD8+ T cells. Taken together, these data provide insight into the extent to which HCV is capable of evading early CD8+ T-cell responses and support the hypothesis that dysfunction of CD8+ T cells may be associated with failure to resolve HCV infections.


2005 ◽  
Vol 79 (12) ◽  
pp. 7860-7867 ◽  
Author(s):  
Tobias Boettler ◽  
Hans Christian Spangenberg ◽  
Christoph Neumann-Haefelin ◽  
Elisabeth Panther ◽  
Simonetta Urbani ◽  
...  

ABSTRACT Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8+ T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4+CD25+ regulatory phenotype in suppressing virus-specific CD8+ T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8+ T cells were inhibited by CD4+CD25+ T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8+ T cells but also to influenza virus-specific CD8+ T cells. Importantly, CD4+CD25+ T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8+ T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4+CD25+ cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4+CD25+ T cells that are able to suppress CD8+ T-cell responses to different viral antigens. Our results further suggest that CD4+CD25+ T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Stefania Capone ◽  
Anthony Brown ◽  
Felicity Hartnell ◽  
Mariarosaria Del Sorbo ◽  
Cinzia Traboni ◽  
...  

Abstract Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 374 ◽  
Author(s):  
Faria Ahmed ◽  
Andrea Ibrahim ◽  
Curtis L. Cooper ◽  
Ashok Kumar ◽  
Angela M. Crawley

Chronic hepatitis C virus (HCV) infection causes generalized CD8+ T cell impairment, not limited to HCV-specific CD8+ T-cells. Liver-infiltrating monocyte-derived macrophages (MDMs) contribute to the local micro-environment and can interact with and influence cells routinely trafficking through the liver, including CD8+ T-cells. MDMs can be polarized into M1 (classically activated) and M2a, M2b, and M2c (alternatively activated) phenotypes that perform pro- and anti-inflammatory functions, respectively. The impact of chronic HCV infection on MDM subset functions is not known. Our results show that M1 cells generated from chronic HCV patients acquire M2 characteristics, such as increased CD86 expression and IL-10 secretion, compared to uninfected controls. In contrast, M2 subsets from HCV-infected individuals acquired M1-like features by secreting more IL-12 and IFN-γ. The severity of liver disease was also associated with altered macrophage subset differentiation. In co-cultures with autologous CD8+ T-cells from controls, M1 macrophages alone significantly increased CD8+ T cell IFN-γ expression in a cytokine-independent and cell-contact-dependent manner. However, M1 macrophages from HCV-infected individuals significantly decreased IFN-γ expression in CD8+ T-cells. Therefore, altered M1 macrophage differentiation in chronic HCV infection may contribute to observed CD8+ T-cell dysfunction. Understanding the immunological perturbations in chronic HCV infection will lead to the identification of therapeutic targets to restore immune function in HCV+ individuals, and aid in the mitigation of associated negative clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document