scholarly journals Human Cytomegalovirus Glycoproteins gB and gH/gL Mediate Epithelial Cell-Cell Fusion When Expressed either in cis or in trans

2008 ◽  
Vol 82 (23) ◽  
pp. 11837-11850 ◽  
Author(s):  
Adam L. Vanarsdall ◽  
Brent J. Ryckman ◽  
Marie C. Chase ◽  
David C. Johnson

ABSTRACT Herpesviruses use a cascade of interactions with different cell surface molecules to gain entry into cells. In many cases, this involves binding to abundant glycosaminoglycans or integrins followed by interactions with more limited cell surface proteins, leading to fusion with cellular membranes. Human cytomegalovirus (HCMV) has the ability to infect a wide variety of human cell types in vivo. However, very little is known about which HCMV glycoproteins mediate entry into various cell types, including relevant epithelial and endothelial cells. For other herpesviruses, studies of cell-cell fusion induced by viral proteins have provided substantial information about late stages of entry. In this report, we describe the fusion of epithelial, endothelial, microglial, and fibroblast cells in which HCMV gB and gH/gL were expressed from nonreplicating adenovirus vectors. Fusion frequently involved the majority of cells, and gB and gH/gL were both necessary and sufficient for fusion, whereas no fusion occurred when either glycoprotein was omitted. Coexpression of UL128, UL130, and UL131 did not enhance fusion. We concluded that the HCMV core fusion machinery consists of gB and gH/gL. Coimmunoprecipitation indicated that HCMV gB and gH/gL can interact. Importantly, expression of gB and gH/gL in trans (gB-expressing cells mixed with other gH/gL-expressing cells) resulted in substantial fusion. We believe that this is the first description of a multicomponent viral fusion machine that can be split between cells. If gB and gH/gL must interact for fusion, then these molecules must reach across the space between apposing cells. Expression of gB and gH/gL in trans with different cell types revealed surface molecules that are required for fusion on HCMV-permissive cells but not on nonpermissive cells.

2003 ◽  
Vol 2 (5) ◽  
pp. 1099-1114 ◽  
Author(s):  
Guohong Huang ◽  
Mingliang Zhang ◽  
Scott E. Erdman

ABSTRACT Adherence of fungal cells to host substrates and each other affects their access to nutrients, sexual conjugation, and survival in hosts. Adhesins are cell surface proteins that mediate these different cell adhesion interactions. In this study, we examine the in vivo functional requirements for specific posttranslational modifications to these proteins, including glycophosphatidylinositol (GPI) anchor addition and O-linked glycosylation. The processing of some fungal GPI anchors, creating links to cell wall β-1,6 glucans, is postulated to facilitate postsecretory traffic of proteins to cell wall domains conducive to their functions. By studying the yeast sexual adhesin subunit Aga1p, we found that deletion of its signal sequence for GPI addition eliminated its activity, while deletions of different internal domains had various effects on function. Substitution of the Aga1p GPI signal domain with those of other GPI-anchored proteins, a single transmembrane domain, or a cysteine capable of forming a disulfide all produced functional adhesins. A portion of the cellular pool of Aga1p was determined to be cell wall resident. Aga1p and the α-agglutinin Agα1p were shown to be under glycosylated in cells lacking the protein mannosyltransferase genes PMT1 and PMT2, with phenotypes manifested only in MATα cells for single mutants but in both cell types when both genes are absent. We conclude that posttranslational modifications to Aga1p are necessary for its biogenesis and activity. Our studies also suggest that in addition to GPI-glucan linkages, other cell surface anchorage mechanisms, such as transmembrane domains or disulfides, may be employed by fungal species to localize adhesins.


2020 ◽  
Vol 6 (19) ◽  
pp. eaba0310 ◽  
Author(s):  
Yang Zhang ◽  
Trieu Le ◽  
Ryan Grabau ◽  
Zahra Mohseni ◽  
Hoejeong Kim ◽  
...  

Cell-cell fusion or syncytialization is fundamental to the reproduction, development, and homeostasis of multicellular organisms. In addition to various cell type–specific fusogenic proteins, cell surface externalization of phosphatidylserine (PS), a universal eat-me signal in apoptotic cells, has been observed in different cell fusion events. Nevertheless, the molecular underpinnings of PS externalization and cellular mechanisms of PS-facilitated cell-cell fusion are unclear. Here, we report that TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), plays an essential role in placental trophoblast fusion by translocating PS to cell surface independent of apoptosis. The placentas from the TMEM16F knockout mice exhibit deficiency in trophoblast syncytialization and placental development, which lead to perinatal lethality. We thus identified a new biological function of TMEM16F CaPLSase in trophoblast fusion and placental development. Our findings provide insight into understanding cell-cell fusion mechanism of other cell types and on mitigating pregnancy complications such as miscarriage, intrauterine growth restriction, and preeclampsia.


PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0185715 ◽  
Author(s):  
Liam Whiteley ◽  
Maria Haug ◽  
Kristina Klein ◽  
Matthias Willmann ◽  
Erwin Bohn ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 692 ◽  
Author(s):  
James T. Kelly ◽  
Stacey Human ◽  
Joseph Alderman ◽  
Fatoumatta Jobe ◽  
Leanne Logan ◽  
...  

The measles virus (MeV), a member of the genus Morbillivirus, is an established pathogen of humans. A key feature of morbilliviruses is their ability to spread by virus–cell and cell–cell fusion. The latter process, which leads to syncytia formation in vitro and in vivo, is driven by the viral fusion (F) and haemagglutinin (H) glycoproteins. In this study, we demonstrate that MeV glycoproteins are sensitive to inhibition by bone marrow stromal antigen 2 (BST2/Tetherin/CD317) proteins. BST2 overexpression causes a large reduction in MeV syncytia expansion. Using quantitative cell–cell fusion assays, immunolabeling, and biochemistry we further demonstrate that ectopically expressed BST2 directly inhibits MeV cell–cell fusion. This restriction is mediated by the targeting of the MeV H glycoprotein, but not other MeV proteins. Using truncation mutants, we further establish that the C-terminal glycosyl-phosphatidylinositol (GPI) anchor of BST2 is required for the restriction of MeV replication in vitro and cell–cell fusion. By extending our study to the ruminant morbillivirus peste des petits ruminants virus (PPRV) and its natural host, sheep, we also confirm this is a broad and cross-species specific phenotype.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Sebastian Pieperhoff ◽  
Mareike Barth ◽  
Steffen Rickelt ◽  
Werner W. Franke

Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of thecomplexus adhaerentesconnecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.


2021 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

The viral fusion protein glycoprotein B (gB) is conserved in all herpesviruses and is essential for virus entry. During entry, gB fuses viral and host cell membranes by refolding from a prefusion to a postfusion form. We previously introduced three structure-based mutations (gB-I671A/H681A/F683A) into the domain V arm of the gB ectodomain that resulted in reduced cell-cell fusion. A virus carrying these three mutations (called gB3A) displayed a small plaque phenotype and remarkably delayed entry into cells. To identify mutations that could counteract this phenotype, we serially passaged the gB3A virus and selected for revertant viruses with increased plaque size. Genomic sequencing revealed that the revertant viruses had second-site mutations in gB, including E187A, M742T, and S383F/G645R/V705I/V880G. Using expression constructs encoding these mutations, only gB-V880G was shown to enhance cell-cell fusion. In contrast, all of the revertant viruses showed enhanced entry kinetics, underscoring the fact that cell-cell fusion and virus-cell fusion are different. The results indicate that mutations in three different regions of gB (domain I, the membrane proximal region, and the cytoplasmic tail domain) can counteract the slow entry phenotype of gB3A virus. Mapping these compensatory mutations to prefusion and postfusion structural models suggests sites of intramolecular functional interactions with the gB domain V arm that may contribute to the gB fusion function. Importance The nine human herpesviruses are ubiquitous and cause a range of disease in humans. Glycoprotein B (gB) is an essential viral fusion protein that is conserved in all herpesviruses. During host cell entry, gB mediates virus-cell membrane fusion by undergoing a conformational change. Structural models for the prefusion and postfusion form of gB exist, but the details of how the protein converts from one to the other are unclear. We previously introduced structure-based mutations into gB that inhibited virus entry and fusion. By passaging this entry-deficient virus over time, we selected second-site mutations that partially restore virus entry. The location of these mutations suggest regulatory sites that contribute to fusion and gB refolding during entry. gB is a target of neutralizing antibodies and defining how gB refolds during entry could provide a basis for the development of fusion inhibitors for future research or clinical use.


1977 ◽  
Vol 28 (1) ◽  
pp. 179-188
Author(s):  
S. Knutton ◽  
D. Jackson ◽  
M. Ford

Fusion of erythrocytes and HeLa cells with Sendai and Newcastle disease viruses has been studied by scanning electron microscopy. Most virus particles are spherical but vary in diameter from approximately 200 to approximately 600 nm. At 4 degrees C virus particles bind randomly to the cell surface and at high cell densities cross-linking of adjacent cells by virus particles results in cell agglutination. Cell-cell fusion takes place when the agglutinated cell suspension is warmed to 37 degrees C. Fusion is initiated at sites of cell-cell contact and is accompanied in all cases by cell swelling. In the case of suspension HeLa cells, virally mediated cell swelling involves an ‘unfolding’ of cell surface microvilli and results in the formation of smooth-surfaced single or fused cells. With erythrocytes, swelling results in haemolysis. There is a dramatic reduction in the numbers of virus particles bound to cells following fusion.


1997 ◽  
Vol 186 (12) ◽  
pp. 1985-1996 ◽  
Author(s):  
Qin Yu ◽  
Bryan P. Toole ◽  
Ivan Stamenkovic

To understand how the hyaluronan receptor CD44 regulates tumor metastasis, the murine mammary carcinoma TA3/St, which constitutively expresses cell surface CD44, was transfected with cDNAs encoding soluble isoforms of CD44 and the transfectants (TA3sCD44) were compared with parental cells (transfected with expression vector only) for growth in vivo and in vitro. Local release of soluble CD44 by the transfectants inhibited the ability of endogenous cell surface CD44 to bind and internalize hyaluronan and to mediate TA3 cell invasion of hyaluronan-producing cell monolayers. Mice intravenously injected with parental TA3/St cells developed massive pulmonary metastases within 21–28 d, whereas animals injected with TA3sCD44 cells developed few or no tumors. Tracing of labeled parental and transfectant tumor cells revealed that both cell types initially adhered to pulmonary endothelium and penetrated the interstitial stroma. However, although parental cells were dividing and forming clusters within lung tissue 48 h following injection, >80% of TA3sCD44 cells underwent apoptosis. Although sCD44 transfectants displayed a marked reduction in their ability to internalize and degrade hyaluronan, they elicited abundant local hyaluronan production within invaded lung tissue, comparable to that induced by parental cells. These observations provide direct evidence that cell surface CD44 function promotes tumor cell survival in invaded tissue and that its suppression can induce apoptosis of the invading tumor cells, possibly as a result of impairing their ability to penetrate the host tissue hyaluronan barrier.


1998 ◽  
Vol 111 (9) ◽  
pp. 1305-1318 ◽  
Author(s):  
S.M. Norvell ◽  
K.J. Green

The integrity of cell-cell junctions in epithelial cells depends on functional interactions of both extracellular and intracellular domains of cadherins with other junction proteins. To examine the roles of the different domains of E-cadherin and desmoglein in epithelial junctions, we stably expressed full length desmoglein 1 and chimeras of E-cadherin and desmoglein 1 in A431 epithelial cells. Full length desmoglein 1 was able to incorporate into or disrupt endogenous desmosomes depending on expression level. Each of the chimeric cadherin molecules exhibited distinct localization patterns at the cell surface. A chimera of the desmoglein 1 extracellular domain and the E-cadherin intracellular domain was distributed diffusely at the cell surface while the reverse chimera, comprising the E-cadherin extracellular domain and the desmoglein 1 intracellular domain, localized in large, sometimes contiguous patches at cell-cell interfaces. Nevertheless, both constructs disrupted desmosome assembly. Expression of constructs containing the desmoglein 1 cytoplasmic domain resulted in approximately a 3-fold decrease in E-cadherin bound to plakoglobin and a 5- to 10-fold reduction in the steady-state levels of the endogenous desmosomal cadherins, desmoglein 2 and desmocollin 2, possibly contributing to the dominant negative effect of the desmoglein 1 tail. In addition, biochemical analysis of protein complexes in the stable lines revealed novel in vivo protein interactions. Complexes containing beta-catenin and desmoglein 1 were identified in cells expressing constructs containing the desmoglein 1 tail. Furthermore, interactions were identified between endogenous E-cadherin and the chimera containing the E-cadherin extracellular domain and the desmoglein 1 intracellular domain providing in vivo evidence for previously predicted lateral interactions of E-cadherin extracellular domains.


Sign in / Sign up

Export Citation Format

Share Document