scholarly journals Bridging the Gap: Virus Long-Distance Spread via Tunneling Nanotubes

2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Robert J. J. Jansens ◽  
Alexander Tishchenko ◽  
Herman W. Favoreel

ABSTRACT Tunneling nanotubes (TNTs) are actin-based intercellular conduits that connect distant cells and allow intercellular transfer of molecular information, including genetic information, proteins, lipids, and even organelles. Besides providing a means of intercellular communication, TNTs may also be hijacked by pathogens, particularly viruses, to facilitate their spread. Viruses of many different families, including retroviruses, herpesviruses, orthomyxoviruses, and several others have been reported to trigger the formation of TNTs or TNT-like structures in infected cells and use these structures to efficiently spread to uninfected cells. In the current review, we give an overview of the information that is currently available on viruses and TNT-like structures, and we discuss some of the standing questions in this field.

2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Robert J. J. Jansens ◽  
Wim Van den Broeck ◽  
Steffi De Pelsmaeker ◽  
Jochen A. S. Lamote ◽  
Cliff Van Waesberghe ◽  
...  

ABSTRACT Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication.


2020 ◽  
Vol 10 ◽  
Author(s):  
Emil Lou

It is well established that the role of the tumor microenvironment (TME) in cancer progression and therapeutic resistance is crucial, but many of the underlying mechanisms are still being elucidated. Even with better understanding of molecular oncology and identification of genomic drivers of these processes, there has been a relative lag in identifying and appreciating the cellular drivers of both invasion and resistance. Intercellular communication is a vital process that unifies and synchronizes the diverse components of the tumoral infrastructure. Elucidation of the role of extracellular vesicles (EVs) over the past decade has cast a brighter light on this field. And yet even with this advance, in addition to diffusible soluble factor-mediated paracrine and endocrine cell communication as well as EVs, additional niches of intratumoral communication are filled by other modes of intercellular transfer. Tunneling nanotubes (TNTs), tumor microtubes (TMs), and other similar intercellular channels are long filamentous actin-based cellular conduits (in most epithelial cancer cell types, ~15-500 µm in length; 50–1000+ nm in width). They extend and form direct connections between distant cells, serving as conduits for direct intercellular transfer of cell cargo, such as mitochondria, exosomes, and microRNAs; however, many of their functional roles in mediating tumor growth remain unknown. These conduits literally create a physical bridge to create a syncytial network of dispersed cells amidst the intercellular stroma-rich matrix. Emerging evidence suggests that they provide a cellular mechanism for induction and emergence of drug resistance and contribute to increased invasive and metastatic potential. They have been imaged in vitro and also in vivo and ex vivo in tumors from human patients as well as animal models, thus not only proving their existence in the TME, but opening further speculation about their exact role in the dynamic niche of tumor ecosystems. TNT cellular networks are upregulated between cancer and stromal cells under hypoxic and other conditions of physiologic and metabolic stress. Furthermore, they can connect malignant cells to benign cells, including vascular endothelial cells. The field of investigation of TNT-mediated tumor-stromal, and tumor-tumor, cell-cell communication is gaining momentum. The mixture of conditions in the microenvironment exemplified by hypoxia-induced ovarian cancer TNTs playing a crucial role in tumor growth, as just one example, is a potential avenue of investigation that will uncover their role in relation to other known factors, including EVs. If the role of cancer heterocellular signaling via TNTs in the TME is proven to be crucial, then disrupting formation and maintenance of TNTs represents a novel therapeutic approach for ovarian and other similarly invasive peritoneal cancers.


2007 ◽  
Vol 81 (13) ◽  
pp. 7286-7292 ◽  
Author(s):  
Winson S. C. Ho ◽  
Anthony N. van den Pol

ABSTRACT Astrocytes are the first cells infected by murine cytomegalovirus (MCMV) in primary cultures of brain. These cells play key roles in intercellular signaling and neuronal development, and they modulate synaptic activity within the nervous system. Using ratiometric fura-2 digital calcium imaging of >8,000 neurons and glia, we found that MCMV-infected astrocytes showed an increase in intracellular basal calcium levels and an enhanced response to neuroactive substances, including glutamate and ATP, and to high potassium levels. Cultured neurons with no sign of MCMV infection showed attenuated synaptic signaling after infection of the underlying astrocyte substrate, and intercellular communication between astrocytes with no sign of infection was reduced by the presence of infected glia. These bystander effects would tend to cause further deterioration of cellular communication in the brain in addition to the problems caused by the loss of directly infected cells.


Author(s):  
Tomohiro Gonjo ◽  
Bjørn Harald Olstad

Researchers have quantified swimming races for several decades to provide objective information on race strategy and characteristics. The purpose of the present review was to summarize knowledge established in the literature and current issues in swimming race analysis. A systematic search of the literature for the current narrative review was conducted in September 2020 using Web of Science, SPORTDiscus (via EBSCO), and PubMed. After examining 321 studies, 22 articles were included in the current review. Most studies divided the race into the start, clean swimming, turn, and/or finish segments; however, the definition of each segment varied, especially for the turn. Ideal definitions for the start and turn-out seemed to differ depending on the stroke styles and swimmers’ level. Many studies have focused on either 100 m or 200 m events with the four strokes (butterfly, backstroke, breaststroke, and freestyle). Contrastingly, there were few or no studies for 50 m, long-distance, individual medley, and relay events. The number of studies examining races for short course, junior and Paralympic swimmers were also very limited. Future studies should focus on those with limited evidence as well as race analysis outside competitions in which detailed kinematic and physiological analyses are possible.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michal Shahar ◽  
Auryan Szalat ◽  
Haim Rosen

Actin-based tunneling nanotubes are a means of intercellular communication between remote cells. In the last decade, this type of nanotube was described in a wide variety of cell types and it became widely accepted that communication through these nanotubes is related to response to environmental changes. Few reports, however, are available regarding the expression of similar nanotubes in vivo or in primary cells. Moreover, the functional significance of this intercellular communication for health and disease is largely unknown. In this context, and as a first step in unraveling these questions, we examined the formation of similar nanotubes in primary peripheral human monocytes. To that end, we combined the use of a live cell imaging system along with advanced methods of fluorescent and scanning electron microscopy. This experimental approach reveals for the first time that the bacterial lipopolysaccharide endotoxin induces a transient expression of an unexpected abundance of actin-based tunneling nanotubes associated with vesicles. In addition, it was found that a similar response can be achieved by treating human monocytes with various bacterial and yeast membrane components, as well as with a viral component analog. In all these cases, this response is mediated by distinct complexes of toll-like receptors. Therefore, we suggest that the observed phenomena are related to a broad type of monocyte pathogen response, and raise the possibility that the phenomena described above may be involved in many clinical situations related to inflammation as a new topic of study.


2021 ◽  
Author(s):  
Sara B. York ◽  
Li Sun ◽  
Allaura S. Cone ◽  
Leanne C. Duke ◽  
Mujeeb R. Cheerathodi ◽  
...  

ABSTRACTExtracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from Hepatitis C virus (HCV) infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus infected cells secrete distinct EV sub-populations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with varying sizes and density compared to those released from non-infected cells. We also show that the EV enriched tetraspanin CD63 regulates the release of EVs, and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika infection.ImportanceZika virus is a re-emerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus gaining a greater understanding of how Zika affects EV cargo may aid in the development of better diagnostics, targeted therapeutics and prophylactic treatments.


2014 ◽  
Vol 27 (3) ◽  
pp. 215-226 ◽  
Author(s):  
M. Sorel ◽  
J. A. Garcia ◽  
S. German-Retana

A unique feature shared by all plant viruses of the Potyviridae family is the induction of characteristic pinwheel-shaped inclusion bodies in the cytoplasm of infected cells. These cylindrical inclusions are composed of the viral-encoded cylindrical inclusion helicase (CI protein). Its helicase activity was characterized and its involvement in replication demonstrated through different reverse genetics approaches. In addition to replication, the CI protein is also involved in cell-to-cell and long-distance movements, possibly through interactions with the recently discovered viral P3N-PIPO protein. Studies over the past two decades demonstrate that the CI protein is present in several cellular compartments interacting with viral and plant protein partners likely involved in its various roles in different steps of viral infection. Furthermore, the CI protein acts as an avirulence factor in gene-for-gene interactions with dominant-resistance host genes and as a recessive-resistance overcoming factor. Although a significant amount of data concerning the potential functions and subcellular localization of this protein has been published, no synthetic review is available on this important multifunctional protein. In this review, we compile and integrate all information relevant to the current understanding of this viral protein structure and function and present a mode of action for CI, combining replication and movement.


2018 ◽  
Vol 62 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Crislyn D’Souza-Schorey ◽  
Jeffrey S. Schorey

EV (extracellular vesicle) biology is a rapidly expanding field. These heterogeneous membrane vesicles, which are shed from virtually all cell types, collectively represent a new dimension of intercellular communication in normal physiology and disease. They have been shown to deliver infectious and pathogenic agents to non-infected cells whereas in cancers they are thought to condition the tumor microenvironment. Their presence in body fluids and inherent capacity for systemic delivery point to their clinical promise. All of the above only intensifies the need to better understand the classification, mode of biogenesis, and contents of the different subtypes of EVs. This article focusses on vesicle subtypes labeled as exosomes and MVs (microvesicles) and discusses the biogenesis and release of these vesicles from cells.


Sign in / Sign up

Export Citation Format

Share Document