scholarly journals Myxoma Virus M083 Is a Virulence Factor Which Mediates Systemic Dissemination

2018 ◽  
Vol 92 (7) ◽  
Author(s):  
A. M. Wolfe ◽  
K. M. Dunlap ◽  
A. C. Smith ◽  
M. Y. Bartee ◽  
E. Bartee

ABSTRACTPoxviruses are large, DNA viruses whose protein capsid is surrounded by one or more lipid envelopes. Embedded into these lipid envelopes are three conserved viral proteins which are thought to mediate binding of virions to target cells. While the function of these proteins has been studiedin vitro, their specific roles during the pathogenesis of poxviral disease remain largely unclear. Here we present data demonstrating that the putative chondroitin binding protein M083 from the leporipoxvirus myxoma virus is a significant virulence factor during infection of susceptibleOryctolagusrabbits. Removal of M083 results in a reduced capacity of virus to spread beyond the regional lymph nodes and completely eliminates infection-mediated mortality.In vitro, removal of M083 results in only minor intracellular replication defects but causes a significant reduction in the ability of myxoma virus to spread from infected epithelial cells onto primary lymphocytes. We hypothesize that the physiological role of M083 is therefore to mediate the spread of myxoma virus onto rabbit lymphocytes, allowing these cells to disseminate virus throughout infected rabbits.IMPORTANCEPoxviruses represent both a class of human pathogens and potential therapeutic agents for the treatment of human malignancy. Understanding the basic biology of these agents is therefore significant to human health in a variety of ways. While the mechanisms mediating poxviral binding have been well studiedin vitro, how these mechanisms impact poxviral pathogenesisin vivoremains unclear. The current study advances our understanding of how poxviral binding impacts viral pathogenesis by demonstrating that the putative chondroitin binding protein M083 plays a critical role during the pathogenesis of myxoma virus in susceptibleOryctolagusrabbits by impacting viral dissemination through changes in the transfer of virions onto primary splenocytes.

2016 ◽  
Vol 82 (24) ◽  
pp. 7041-7051 ◽  
Author(s):  
Chelsey M. VanDrisse ◽  
Kristy L. Hentchel ◽  
Jorge C. Escalante-Semerena

ABSTRACTAcetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals.Streptomycesspecies utilize aGcn5N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin,phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA fromSalmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases.S. entericawas used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO.In vitroandin vivoanalyses identified substrates acetylated by putative PPT acetyltransferases fromDeinococcus radiodurans(DR_1057 and DR_1182) andGeobacillus kaustophilus(GK0593 and GK2920).In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results ofin vitrostudies were consistent with thein vivoresults. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases inBurkholderia xenovorans,Bacillus subtilis,Staphylococcus aureus,Acinetobacter baylyi, andEscherichia coli.IMPORTANCEThe work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role ofGcn5N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination ofin vivo,in vitro, and bioinformatics approaches reported here identified GNATs that can acetylate and detoxify phosphinothricin.


2014 ◽  
Vol 80 (20) ◽  
pp. 6549-6559 ◽  
Author(s):  
Sabrina Wemhoff ◽  
Roland Klassen ◽  
Friedhelm Meinhardt

ABSTRACTZymocin is aKluyveromyces lactisprotein toxin composed of αβγ subunits encoded by the cytoplasmic virus-like element k1 and functions by αβ-assisted delivery of the anticodon nuclease (ACNase) γ into target cells. The toxin binds to cells' chitin and exhibits chitinase activityin vitrothat might be important during γ import.Saccharomyces cerevisiaestrains carrying k1-derived hybrid elements deficient in either αβ (k1ORF2) or γ (k1ORF4) were generated. Loss of either gene abrogates toxicity, and unexpectedly, Orf2 secretion depends on Orf4 cosecretion. Functional zymocin assembly can be restored by nuclear expression of k1ORF2 or k1ORF4, providing an opportunity to conduct site-directed mutagenesis of holozymocin. Complementation required active site residues of α's chitinase domain and the sole cysteine residue of β (Cys250). Since βγ are reportedly disulfide linked, the requirement for the conserved γ C231 was probed. Toxicity of intracellularly expressed γ C231A indicated no major defect in ACNase activity, while complementation of k1ΔORF4 by γ C231A was lost, consistent with a role of β C250 and γ C231 in zymocin assembly. To test the capability of αβ to carry alternative cargos, the heterologous ACNase fromPichia acaciae(P. acaciaeOrf2 [PaOrf2]) was expressed, along with its immunity gene, in k1ΔORF4. While efficient secretion of PaOrf2 was detected, suppression of the k1ΔORF4-derived k1Orf2 secretion defect was not observed. Thus, the dependency of k1Orf2 on k1Orf4 cosecretion needs to be overcome prior to studying αβ's capability to deliver other cargo proteins into target cells.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Yves Lecarpentier ◽  
Nicolas Vignier ◽  
Patricia Oliviero ◽  
Miguel Cortes-Morichetti ◽  
Lucie Carrier ◽  
...  

The precise role of cardiac myosin binding protein C (cMyBP-C) on actomyosin interaction (AMI) remains unknown. We hypothesized that the lack of cMyBP-C impaired cardiac AMI. Experiments were performed on 16 weeks old cMyBP-C −/− (KO) and age-matched wild-type (WT) mice (n=20/group). In vitro mechanical and energetics properties were performed on left ventricular (LV) papillary muscles and Huxley’s equations were used to characterize AMI. In vitro motility assays were performed using myosin purified from LV. Myosin-based sliding velocities of actin filaments were analyzed at baseline, after pretreatment of the myosin solution with 10 umol of the catalytic subunit of PKA and/or in the presence of increasing amount of α-actinin, an actin-binding protein that acts as an internal load thereby providing an index of relative isometric force. Western-blot analysis was used to quantify cMyBP-C and phosphorylated cMyBP-C in myosin solutions. Compared to WT, both total tension and maximum shortening velocity were lower in KO (p<0.001). The probability for myosin to be weakly bound to actin was higher in KO than in WT (8.6±0.3 vs. 5.4±0.2%, p<0.05), whereas the number of strongly bound, high-force generated state cross-bridges was lower in KO (6.4±0.9 vs. 11.6±1.0 10 9 /mm 2 , p<0.001). The unitary force per AMI was lower in KO than in WT (p<0.01). At baseline, myosin-based velocities of actin were slower in KO than in WT (1.65±0.01 vs. 1.98±0.01 um/s, p<0.01). The minimum amount of α-actinin needed to completely arrest the thin filament motility was significantly higher in WT than in KO (73.3±1.1 vs 29.1±0.1 ug/l, p<0.001). As expected, cMyBP-C was present in WT myosin solution whereas cMyBP-C was not detected in KO. In WT, PKA induced a 1.6-fold increased in cMyBP-C phosphorylation (p<0.01) associated with a 53±1% increase in the amount of α-actinin required to arrest thin filament motility (p<0.001). PKA did not modify sliding velocity in WT. In KO, PKA had no effect on myosin sliding. We conclude that cMyBP-C regulates AMI by limiting inefficient cross-bridge formation and by enhancing the power stroke step. Phosphorylation status of cMyBP-C appears to play a critical role on cardiac contractility through a direct effect on the myosin molecular motor.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Rashmi Gupta ◽  
Carolina Rodrigues Felix ◽  
Matthew P. Akerman ◽  
Kate J. Akerman ◽  
Cathryn A. Slabber ◽  
...  

ABSTRACTMycobacterium tuberculosisand the fast-growing speciesMycobacterium abscessusare two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistantM. tuberculosisstrains and the high level of intrinsic resistance ofM. abscessuscall for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), againstM. abscessusandM. tuberculosis. We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicatingin vitroconditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverseM. tuberculosisandM. abscessusclinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target theM. tuberculosisgyrase.In vitroenzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity againstM. tuberculosisandM. abscessusthat act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


2018 ◽  
Vol 218 (1) ◽  
pp. 317-332 ◽  
Author(s):  
Li Qiang ◽  
Hong Cao ◽  
Jing Chen ◽  
Shaun G. Weller ◽  
Eugene W. Krueger ◽  
...  

The process by which tumor cells mechanically invade through surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. The directed recruitment of the metalloproteinase MT1-MMP to invadopodia plays a critical role in this invasive process. Here, we provide mechanistic insight into MT1-MMP cytoplasmic tail binding protein 1 (MTCBP-1) with respect to invadopodia formation, matrix remodeling, and invasion by pancreatic tumor cells. MTCBP-1 localizes to invadopodia and interacts with MT1-MMP. We find that this interaction displaces MT1-MMP from invadopodia, thereby attenuating their number and function and reducing the capacity of tumor cells to degrade matrix. Further, we observe an inverse correlation between MTCBP-1 and MT1-MMP expression both in cultured cell lines and human pancreatic tumors. Consistently, MTCBP-1–expressing cells show decreased ability to invade in vitro and metastasize in vivo. These findings implicate MTCBP-1 as an inhibitor of the metastatic process.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Béatrice Clémenceau ◽  
Sandrine Valsesia-Wittmann ◽  
Anne-Catherine Jallas ◽  
Régine Vivien ◽  
Raphaël Rousseau ◽  
...  

The present work was designed to compare two mechanisms of cellular recognition based on Ab specificity: firstly, when the anti-HER2 mAb trastuzumab bridges target cells and cytotoxic lymphocytes armed with a Fc receptor (ADCC) and, secondly, when HER2 positive target cells are directly recognized by cytotoxic lymphocytes armed with a chimeric antigen receptor (CAR). To compare these two mechanisms, we used the same cellular effector (NK-92) and the same signaling domain (FcεRIγ). The NK-92 cytotoxic cell line was transfected with either a FcγRIIIa-FcεRIγ(NK-92CD16) or a trastuzumab-based scFv-FcεRIγchimeric receptor (NK-92CAR). In vitro, the cytotoxic activity against HER2 positive target cells after indirect recognition byNK-92CD16was always inferior to that observed after direct recognition byNK-92CAR. In contrast, and somehow unexpectedly, in vivo, adoptive transfer ofNK-92CD16+ trastuzumab but not ofNK-92CARinduced tumor regression. Analysis of the in vivo xenogeneic system suggested that the human CH2-CH3 IgG2 used as a spacer in our construct was able to interact with the FcR present at the cell surface of the few NSG-FcR+ remaining immune cells. This interaction, leading to blockage of theNK-92CARin the periphery of the engrafted tumor cells, stresses the critical role of the composition of the spacer domain.


2016 ◽  
Vol 60 (4) ◽  
pp. 2435-2442 ◽  
Author(s):  
Tecla Ciociola ◽  
Thelma A. Pertinhez ◽  
Laura Giovati ◽  
Martina Sperindè ◽  
Walter Magliani ◽  
...  

ABSTRACTSynthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro. The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo.


2015 ◽  
Vol 197 (8) ◽  
pp. 1478-1491 ◽  
Author(s):  
Gustavo G. Caballero-Flores ◽  
Matthew A. Croxen ◽  
Verónica I. Martínez-Santos ◽  
B. Brett Finlay ◽  
José L. Puente

ABSTRACTThe Gram-negative enteric bacteriumCitrobacter rodentiumis a natural mouse pathogen that has been extensively used as a surrogate model for studying the human pathogens enteropathogenic and enterohemorrhagicEscherichia coli. All three pathogens produce similar attaching and effacing (A/E) lesions in the intestinal epithelium. During infection, these bacteria employ surface structures called fimbriae to adhere and colonize the host intestinal epithelium. ForC. rodentium, the roles of only a small number of its genome-carried fimbrial operons have been evaluated. Here, we report the identification of a novelC. rodentiumcolonization factor, calledgutcolonizationfimbria (Gcf), which is encoded by a chaperone-usher fimbrial operon. AgcfAmutant shows a severe colonization defect within the first 10 days of infection. Thegcfpromoter is not active inC. rodentiumunder severalin vitrogrowth conditions; however, it is readily expressed in aC. rodentiumΔhns1mutant lacking the closest ortholog of theEscherichia colihistone-like nucleoid structuring protein (H-NS) but not in mutants with deletion of the other four genes encoding H-NS homologs. H-NS binds to the regulatory region ofgcf, further supporting its direct role as a repressor of thegcfpromoter that starts transcription 158 bp upstream of the start codon of its first open reading frame. Thegcfoperon possesses interesting novel traits that open future opportunities to expand our knowledge of the structure, regulation, and function during infection of these important bacterial structures.IMPORTANCEFimbriae are surface bacterial structures implicated in a variety of biological processes. Some have been shown to play a critical role during host colonization and thus in disease. Pathogenic bacteria possess the genetic information for an assortment of fimbriae, but their function and regulation and the interplay between them have not been studied in detail. This work provides new insights into the function and regulation of a novel fimbria called Gcf that is important for early establishment of a successful infection byC. rodentiumin mice, despite being poorly expressed underin vitrogrowth conditions. This discovery offers an opportunity to better understand the individual role and the regulatory mechanisms controlling the expression of specific fimbrial operons that are critical during infection.


2013 ◽  
Vol 81 (10) ◽  
pp. 3855-3864 ◽  
Author(s):  
Amir I. Tukhvatulin ◽  
Ilya I. Gitlin ◽  
Dmitry V. Shcheblyakov ◽  
Natalia M. Artemicheva ◽  
Lyudmila G. Burdelya ◽  
...  

ABSTRACTPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) bothin vitroandin vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasiveSalmonellainfection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infectionin vivo.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Begoña Monterroso ◽  
Silvia Zorrilla ◽  
Marta Sobrinos-Sanguino ◽  
Miguel Ángel Robles-Ramos ◽  
Carlos Alfonso ◽  
...  

ABSTRACTDivision ring formation at midcell is controlled by various mechanisms inEscherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipidsin vitro. We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in theE. coliinner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.IMPORTANCEThe division of anE. colicell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integratedin vivoandin vitroanalysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in theE. coliinner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division.


Sign in / Sign up

Export Citation Format

Share Document