scholarly journals The Autoregulatory and Transactivating Functions of the Human Cytomegalovirus IE86 Protein Use Independent Mechanisms for Promoter Binding

2007 ◽  
Vol 81 (11) ◽  
pp. 5807-5818 ◽  
Author(s):  
Dustin T. Petrik ◽  
Kimberly P. Schmitt ◽  
Mark F. Stinski

ABSTRACT The functions of the human cytomegalovirus (HCMV) IE86 protein are paradoxical, as it can both activate and repress viral gene expression through interaction with the promoter region. Although the mechanism for these functions is not clearly defined, it appears that a combination of direct DNA binding and protein-protein interactions is involved. Multiple sequence alignment of several HCMV IE86 homologs reveals that the amino acids 534LPIYE538 are conserved between all primate and nonprimate CMVs. In the context of a bacterial artificial chromosome (BAC), mutation of both P535 and Y537 to alanines (P535A/Y537A) results in a nonviable BAC. The defective HCMV BAC does not undergo DNA replication, although the P535A/Y537A mutant IE86 protein appears to be stably expressed. The P535A/Y537A mutant IE86 protein is able to negatively autoregulate transcription from the major immediate-early (MIE) promoter and was recruited to the MIE promoter in a chromatin immunoprecipitation (ChIP) assay. However, the P535A/Y537A mutant IE86 protein was unable to transactivate early viral genes and was not recruited to the early viral UL4 and UL112 promoters in a ChIP assay. From these data, we conclude that the transactivation and repressive functions of the HCMV IE86 protein can be separated and must occur through independent mechanisms.

2004 ◽  
Vol 78 (4) ◽  
pp. 1817-1830 ◽  
Author(s):  
Elizabeth A. White ◽  
Charles L. Clark ◽  
Veronica Sanchez ◽  
Deborah H. Spector

ABSTRACT The human cytomegalovirus (HCMV) IE2 86-kDa protein is a key viral transactivator and an important regulator of HCMV infections. We used the HCMV genome cloned as a bacterial artificial chromosome (BAC) to construct four HCMV mutants with disruptions in regions of IE2 86 that are predicted to be important for its transactivation and autoregulatory functions. Three of these mutants have mutations that remove amino acids 356 to 359, 427 to 435, and 505 to 511, which disrupts a region of IE2 86 implicated in the activation of HCMV early promoters, a predicted zinc finger domain, and a putative helix-loop-helix motif, respectively, while the fourth carries three arginine-to-alanine substitution mutations in the region of amino acids 356 to 359. The resulting recombinant viruses are not viable, and by using quantitative real-time reverse transcription-PCR and immunofluorescence we have determined the location of the block in their replicative cycles. The IE2 86Δ356-359 mutant is able to support early gene expression, as indicated by the presence of UL112-113 transcripts and UL112-113 and UL44 proteins in cells transfected with the mutant BAC. This mutant does not express late genes and behaves nearly indistinguishably from the IE2 86R356/7/9A substitution mutant. Both exhibit detectable upregulation of major immediate-early transcripts at early times. The IE2 86Δ427-435 and IE2 86Δ505-511 recombinant viruses do not activate the early genes examined and are defective in repression of the major immediate-early promoter. These two mutants also induce the expression of selected delayed early (UL89) and late genes at early times in the infection. We conclude that these three regions of IE2 86 are necessary for productive infections and for differential control of downstream viral gene expression.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 377
Author(s):  
V. Douglas Landers ◽  
Daniel W. Wilkey ◽  
Michael L. Merchant ◽  
Thomas C. Mitchell ◽  
Kevin J. Sokoloski

Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein–protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein–protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host–pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid–IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid–IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein–protein interactions, establish the capsid–IRAK1 interaction as a common alphavirus host–pathogen interface, and delineate the molecular consequences of the capsid–IRAK1 interaction on IRAK1-dependent signaling.


Author(s):  
Hanieh Ghassabian ◽  
Federico Falchi ◽  
Martina Timmoneri ◽  
Beatrice Mercorelli ◽  
Arianna Loregian ◽  
...  

Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS and transplanted patients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets of therapeutic intervention. Among the latter, viral protein-protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle being required for oriLyt-dependent DNA replication, we performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB40-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited AD169 in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, treatment of infected cells with B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with activity on viral DNA synthesis. Therefore, inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 941
Author(s):  
Hanieh Ghassabian ◽  
Federico Falchi ◽  
Martina Timmoneri ◽  
Beatrice Mercorelli ◽  
Arianna Loregian ◽  
...  

Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS patients and transplant recipients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets for therapeutic intervention. Among the latter, viral protein–protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle, being required for oriLyt-dependent DNA replication, it can be considered a potential therapeutic target. We therefore performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB4-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited HCMV AD169 strain in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with the inhibition of viral DNA synthesis measured by qPCR starting from 72 h post infection. Therefore, our data suggest that inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1864
Author(s):  
Isabel Pagani ◽  
Guido Poli ◽  
Elisa Vicenzi

Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level.


2012 ◽  
Vol 93 (5) ◽  
pp. 1046-1058 ◽  
Author(s):  
James C. Towler ◽  
Bahram Ebrahimi ◽  
Brian Lane ◽  
Andrew J. Davison ◽  
Derrick J. Dargan

Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed.


2004 ◽  
Vol 78 (18) ◽  
pp. 10009-10022 ◽  
Author(s):  
Dmitry M. Shayakhmetov ◽  
Zong-Yi Li ◽  
Anuj Gaggar ◽  
Helen Gharwan ◽  
Vladimir Ternovoi ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) vectors containing Ad B-group fibers have become increasingly popular as gene transfer vectors because they efficiently transduce human cell types that are relatively refractory to Ad5 infection. So far, most B-group fiber-containing vectors have been first-generation vectors, deleted of E1 and/or E3 genes. Transduction with these vectors, however, results in viral gene expression and is associated with cytotoxicity and immune responses against transduced cells. To circumvent these problems, we developed fiber-chimeric Ad vectors devoid of all viral genes that were produced either by the homologous recombination of first-generation vectors or by using the Cre/lox-based helper virus system. In this study we compared early steps of infection between first-generation (35-kb genome) and Ad vectors devoid of all viral genes with genome sizes of 28 kb and 12.6 kb. All vectors possessed an Ad35-derived fiber knob domain, which uses CD46 as a primary attachment receptor. Using immortalized human hematopoietic cell lines and primary human CD34-positive hematopoietic cells, we found that the Ad genome size did not affect the efficiency of virus attachment to and internalization into cells. Furthermore, independently of the genome length and structure, all vectors migrated to the nucleus through late endosomal and lysosomal cellular compartments. However, the vector containing the short 12.6-kb genome was unable to efficiently escape from endosomes and deliver its DNA into the nucleus. Moreover, compared to other vectors, these Ad particles were less stable and had an abnormal capsid protein composition, including a lack of capsid-stabilizing protein IX. Our data indicate that the size and structure of the packaged viral genomes can affect the integrity of Ad particles, which in turn results in lower infectivity of Ad vectors.


2005 ◽  
Vol 79 (1) ◽  
pp. 225-233 ◽  
Author(s):  
Jens Reinhardt ◽  
Geoffrey B. Smith ◽  
Christopher T. Himmelheber ◽  
Jane Azizkhan-Clifford ◽  
Edward S. Mocarski

ABSTRACT The human cytomegalovirus major immediate-early (α) protein IE1491aa plays an important role in controlling viral gene expression at low multiplicities of infection. With a transient complementation assay, full-length IE1491aa enhanced the growth of ie1 mutant virus CR208 20-fold better than a deletion mutant lacking 71 carboxyl-terminal amino acids (IE11-420aa). A 16-amino-acid domain between amino acids 476 and 491 was both necessary and sufficient for chromatin-tethering activity; however, this domain was completely dispensable for complementation of CR208 replication. The proximal 55-amino-acid acidic domain (amino acids 421 to 475) was found to be most important for function. A deletion mutant lacking only this domain retained chromatin-tethering activity but failed to complement mutant virus. Interestingly, serine phosphorylation (at amino acids 399, 402, 406, 423, 428, 431, 448, 451, and 455) was not required for complementation. These results show that IE1491aa is composed of at least two domains that support replication, a region located between amino acids 1 and 399 that complements ie1 mutant virus replication to low levels and an acidic domain between amino acids 421 and 479 that dramatically enhances complementation.


2011 ◽  
Vol 92 (12) ◽  
pp. 2757-2769 ◽  
Author(s):  
Martin Zydek ◽  
Ralf Uecker ◽  
Nina Tavalai ◽  
Thomas Stamminger ◽  
Christian Hagemeier ◽  
...  

The onset of human cytomegalovirus (HCMV) lytic replication is strictly controlled by the host cell division cycle. Although viral entry of S/G2-phase cells is unperturbed expression of major immediate-early (MIE) genes IE1 and IE2 is tightly blocked in these cells. Besides the finding that cyclin-dependent kinase (CDK) activity is required for IE1/IE2 repression little is known about the nature of this cell cycle-dependent block. Here, we show that the block occurs after nuclear entry of viral DNA and prevents the accumulation of IE1/IE2 mRNAs, suggesting an inhibition of transcription. Remarkably, the presence of cis-regulatory regions of the MIE locus is neither sufficient nor necessary for IE1/IE2 repression in the S/G2 phase. Furthermore, the block of viral mRNA expression also affects other immediate-early transcribed regions, i.e. the US3 and UL36–38 gene loci. This suggests a mechanism of repression that acts in a general and not a gene-specific fashion. Such a nuclear, genome-wide repression of HCMV is typically mediated by the intrinsic immune defence at nuclear domain 10 (ND10) structures. However, we found that neither Daxx nor PML, the main players of ND10-based immunity, are required for the block to viral gene expression in the S/G2 phase. In addition, the viral tegument protein pp71 (pUL82), a major antagonist of the intrinsic immunity at pre-immediate-early times of infection, proved to be functional in S-phase cells. This suggests the existence of a yet undiscovered, CDK-dependent mechanism exerting higher-level control over immediate-early mRNA expression in HCMV-infected cells.


2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Anita Shrestha ◽  
Kan Bao ◽  
Yun-Ru Chen ◽  
Wenbo Chen ◽  
Ping Wang ◽  
...  

ABSTRACTThe baculovirusAutographa californica multiple nucleopolyhedrovirus(AcMNPV) is a large double-stranded DNA (dsDNA) virus that encodes approximately 156 genes and is highly pathogenic to a variety of larval lepidopteran insects in nature. Oral infection of larval midgut cells is initiated by the occlusion-derived virus (ODV), while secondary infection of other tissues is mediated by the budded virus (BV). Global viral gene expression has been studied in detail in BV-infected cell cultures, but studies of ODV infection in the larval midgut are limited. In this study, we examined expression of the ∼156 AcMNPV genes inTrichoplusia nimidgut tissue using a transcriptomic approach. We analyzed expression profiles of viral genes in the midgut and compared them with profiles from aT. nicell line (Tnms42). Several viral genes (p6.9,orf76,orf75,pp31,Ac-bro,odv-e25, andodv-ec27) had high expression levels in the midgut throughout the infection. Also, the expression of genes associated with occlusion bodies (polhandp10) appeared to be delayed in the midgut in comparison with the cell line. Comparisons of viral gene expression profiles revealed remarkable similarities between the midgut and cell line for most genes, although substantial differences were observed for some viral genes. These included genes associated with high level BV production (fp-25k), acceleration of systemic infection (v-fgf), and enhancement of viral movement (arif-1/orf20). These differential expression patterns appear to represent specific adaptations for virus infection and transmission through the polarized cells of the lepidopteran midgut.IMPORTANCEBaculoviruses such as AcMNPV are pathogens that are natural regulators of certain insect populations. Baculovirus infections are biphasic, with a primary phase initiated by oral infection of midgut epithelial cells by occlusion-derived virus (ODV) virions and a secondary phase in which other tissues are infected by budded-virus (BV) virions. While AcMNPV infections in cultured cells have been studied extensively, comparatively little is known regarding primary infection in the midgut. In these studies, we identified gene expression patterns associated with ODV-mediated infection of the midgut inTrichoplusia niand compared those results with prior results from BV-infected cultured cells, which simulate secondary infection. These studies provide a detailed analysis of viral gene expression patterns in the midgut, which likely represent specific viral strategies to (i) overcome or avoid host defenses in the gut and (ii) rapidly move infection from the midgut, into the hemocoel to facilitate systemic infection.


Sign in / Sign up

Export Citation Format

Share Document