scholarly journals Structure and Function of Flavivirus NS5 Methyltransferase

2007 ◽  
Vol 81 (8) ◽  
pp. 3891-3903 ◽  
Author(s):  
Yangsheng Zhou ◽  
Debashish Ray ◽  
Yiwei Zhao ◽  
Hongping Dong ◽  
Suping Ren ◽  
...  

ABSTRACT The plus-strand RNA genome of flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA → m7GpppA → m7GpppAm. The 2′-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 Å resolution showed a single binding site for S-adenosyl-l-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2′-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2′-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 893-906 ◽  
Author(s):  
Elizabeth Gustavson ◽  
Andrew S Goldsborough ◽  
Zehra Ali ◽  
Thomas B Kornberg

Abstract We isolated and characterized numerous engrailed and invected alleles. Among the deficiencies we isolated, a mutant lacking invected sequences was viable and phenotypically normal, a mutant lacking engrailed was an embryo lethal and had slight segmentation defects, and a mutant lacking both engrailed and invected was most severely affected. In seven engrailed alleles, mutations caused translation to terminate prematurely in the central or C-terminal portion of the coding sequence, resulting in embryonic lethality and segmentation defects. Both engrailed and invected expression declined prematurely in these mutant embryos. In wild-type embryos, engrailed and invected are juxtaposed and are expressed in essentially identical patterns. A breakpoint mutant that separates the mgrailed and invected transcription units parceled different aspects of the expression pattern to engrailed or invected. We also found that both genes cause similar defects when expressed ectopically and that the protein products of both genes act to repress transcription in cultured cells. We propose that the varied phenotypes of the engrailed alleles can be explained by the differential effects these mutants have on the combination of engrailed and invected activities, that engrailed and invected share a regulatory region, and that they encode redundant functions.


2017 ◽  
Vol 73 (4) ◽  
pp. 294-315 ◽  
Author(s):  
Kimberly A. Stanek ◽  
Jennifer Patterson-West ◽  
Peter S. Randolph ◽  
Cameron Mura

The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qianshuo Liu ◽  
Xiaobai Liu ◽  
Defeng Zhao ◽  
Xuelei Ruan ◽  
Rui Su ◽  
...  

AbstractThe blood–brain barrier (BBB) has a vital role in maintaining the homeostasis of the central nervous system (CNS). Changes in the structure and function of BBB can accelerate Alzheimer’s disease (AD) development. β-Amyloid (Aβ) deposition is the major pathological event of AD. We elucidated the function and possible molecular mechanisms of the effect of pseudogene ACTBP2 on the permeability of BBB in Aβ1–42 microenvironment. BBB model treated with Aβ1–42 for 48 h were used to simulate Aβ-mediated BBB dysfunction in AD. We proved that pseudogene ACTBP2, RNA-binding protein KHDRBS2, and transcription factor HEY2 are highly expressed in ECs that were obtained in a BBB model in vitro in Aβ1–42 microenvironment. In Aβ1–42-incubated ECs, ACTBP2 recruits methyltransferases KMT2D and WDR5, binds to KHDRBS2 promoter, and promotes KHDRBS2 transcription. The interaction of KHDRBS2 with the 3′UTR of HEY2 mRNA increases the stability of HEY2 and promotes its expression. HEY2 increases BBB permeability in Aβ1–42 microenvironment by transcriptionally inhibiting the expression of ZO-1, occludin, and claudin-5. We confirmed that knocking down of Khdrbs2 or Hey2 increased the expression levels of ZO-1, occludin, and claudin-5 in APP/PS1 mice brain microvessels. ACTBP2/KHDRBS2/HEY2 axis has a crucial role in the regulation of BBB permeability in Aβ1–42 microenvironment, which may provide a novel target for the therapy of AD.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Ruben G de Bruin ◽  
Lily Shiue ◽  
Anjana Djarmshi ◽  
Hetty C de Boer ◽  
Wai Yi Leung ◽  
...  

A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce new transcription necessary for macrophage identity, but post-transcriptional control of human macrophage differentiation is less well understood. Here, we detail our discovery that levels of the RNA-binding protein Quaking (QKI) are low in monocytes of early atherosclerotic lesions, but abundant in macrophages of advanced plaques. Specific depletion of QKI protein impaired monocyte adhesion, migration and differentiation into macrophages, and lesion formation. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal developmental changes in RNA levels and alternative splicing of RNA transcripts enriched in QKI-bound sequence elements. The importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in post-transcriptionally guiding macrophage identity and function. These studies implicate QKI as a novel target for therapeutic intervention in inflammatory diseases.


2018 ◽  
Vol 200 (12) ◽  
Author(s):  
Johanna Heuveling ◽  
Heidi Landmesser ◽  
Erwin Schneider

ABSTRACT ATP-binding cassette (ABC) transport systems comprise two transmembrane domains/subunits that form a translocation path and two nucleotide-binding domains/subunits that bind and hydrolyze ATP. Prokaryotic canonical ABC import systems require an extracellular substrate-binding protein for function. Knowledge of substrate-binding sites within the transmembrane subunits is scarce. Recent crystal structures of the ABC importer Art(QN) 2 for positively charged amino acids of Thermoanerobacter tengcongensis revealed the presence of one substrate molecule in a defined binding pocket in each of the transmembrane subunits, ArtQ (J. Yu, J. Ge, J. Heuveling, E. Schneider, and M. Yang, Proc Natl Acad Sci U S A 112:5243–5248, 2015, https://doi.org/10.1073/pnas.1415037112 ). This finding raised the question of whether both sites must be loaded with substrate prior to initiation of the transport cycle. To address this matter, we first explored the role of key residues that form the binding pocket in the closely related Art(MP) 2 transporter of Geobacillus stearothermophilus , by monitoring consequences of mutations in ArtM on ATPase and transport activity at the level of purified proteins embedded in liposomes. Our results emphasize that two negatively charged residues (E153 and D160) are crucial for wild-type function. Furthermore, the variant Art[M(L67D)P] 2 exhibited strongly impaired activities, which is why it was considered for construction of a hybrid complex containing one intact and one impaired substrate-binding site. Activity assays clearly revealed that one intact binding site was sufficient for function. To our knowledge, our study provides the first biochemical evidence on transmembrane substrate-binding sites of an ABC importer. IMPORTANCE Canonical prokaryotic ATP-binding cassette importers mediate the uptake of a large variety of chemicals, including nutrients, osmoprotectants, growth factors, and trace elements. Some also play a role in bacterial pathogenesis, which is why full understanding of their mode of action is of the utmost importance. One of the unsolved problems refers to the chemical nature and number of substrate binding sites formed by the transmembrane subunits. Here, we report that a hybrid amino acid transporter of G. stearothermophilus , encompassing one intact and one impaired transmembrane binding site, is fully competent in transport, suggesting that the binding of one substrate molecule is sufficient to trigger the translocation process.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Rikako Hirata ◽  
Kei-ichiro Mishiba ◽  
Nozomu Koizumi ◽  
Yuji Iwata

Abstract Objective microRNA (miRNA) is a small non-coding RNA that regulates gene expression by sequence-dependent binding to protein-coding mRNA in eukaryotic cells. In plants, miRNA plays important roles in a plethora of physiological processes, including abiotic and biotic stress responses. The present study was conducted to investigate whether miRNA-mediated regulation is important for the endoplasmic reticulum (ER) stress response in Arabidopsis. Results We found that hyl1 mutant plants are more sensitive to tunicamycin, an inhibitor of N-linked glycosylation that causes ER stress than wild-type plants. Other miRNA-related mutants, se and ago1, exhibited similar sensitivity to the wild-type, indicating that the hypersensitive phenotype is attributable to the loss-of-function of HYL1, rather than deficiency in general miRNA biogenesis and function. However, the transcriptional response of select ER stress-responsive genes in hyl1 mutant plants was indistinguishable from that of wild-type plants, suggesting that the loss-of-function of HYL1 does not affect the ER stress signaling pathways.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4492 ◽  
Author(s):  
Renato Ferreira de Freitas ◽  
Danton Ivanochko ◽  
Matthieu Schapira

Protein methyltransferases (PMTs) are enzymes involved in epigenetic mechanisms, DNA repair, and other cellular machineries critical to cellular identity and function, and are an important target class in chemical biology and drug discovery. Central to the enzymatic reaction is the transfer of a methyl group from the cofactor S-adenosylmethionine (SAM) to a substrate protein. Here we review how the essentiality of SAM for catalysis is exploited by chemical inhibitors. Occupying the cofactor binding pocket to compete with SAM can be hindered by the hydrophilic nature of this site, but structural studies of compounds now in the clinic revealed that inhibitors could either occupy juxtaposed pockets to overlap minimally, but sufficiently with the bound cofactor, or induce large conformational remodeling leading to a more druggable binding site. Rather than competing with the cofactor, other inhibitors compete with the substrate and rely on bound SAM, either to allosterically stabilize the substrate binding site, or for direct SAM-inhibitor interactions.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3402-3402
Author(s):  
Sabrina Pricl ◽  
Don L Gibbons ◽  
Paola Posocco ◽  
Erik Laurini ◽  
Maurizio Fermeglia ◽  
...  

Abstract Abstract 3402 We discovered a novel BCR-ABL1 mutation (V304D) in pts with CML failing imatinib by DNA expansion of specific clones followed by DNA sequencing of ≥10 clones. BCR-ABL1V304D was detected in a median of 37% (range, 20% to 80%) resistant clones from 13 (18%) of 70 imatinib-resistant pts with CML in chronic phase (CP). Pts received imatinib for a median of 35 months (range 2 to 66) at doses ≥600 mg/d. No pt achieved a cytogenetic response. Four received nilotinib: 3 had hematologic resistance and 1 progressed to blast phase (BP). All pts died with negligible response to second-line TKIs: 8/12 pts on dasatinib had disease progression and 4 responded (2 hematologic and 2 transient minor cytogenetic responses). BCR-ABL1V304D failed to induce cytokine-independence or activate Stat5 in Ba/F3 cells. Phosphorylation of CrkL and specific BCR-ABL1 substrates were detectable but diminished compared to unmutated BCR-ABL1-transduced cells. BCR-ABL1V304D failed to catalyze autophosphorylation and the catalytic domain of ABL1V304D demonstrated deficient kinase activity. Enforced expression of BCR-ABL1V304Din CML cells induced quiescence and protection from imatinib-induced apoptosis. In vitro analyses of cells from a pt in CP expressing BCR-ABL1V304D in 50% of clones failed to detect CrKL phosphorylation in the presence of normal BCR-ABL1 protein levels, suggesting that BCR-ABL1V304D encodes a kinase-deficient protein and is associated with remarkable TKI resistance and extremely poor prognosis. To determine the mechanism of resistance imposed by BCR-ABL1V304D, we modeled this mutation in water and counterions and compared it to unmutated and mutant BCR-ABL1 isoforms. We first correlated the free energy of binding (DGbind) to the corresponding IC50 (DGbind = -RT lnIC50) and calculated the difference in free energy of binding between wild-type and mutant kinases (DDGbind = DGbind(WT) – DGbind(MUT)). DGbind <0 indicates a tighter binding to a TKI of the unmutated kinase relative to the mutant kinase. A negative increase of 1.4 kcal/mol in DGbind corresponds to a decrease by a factor of 10 in the IC50 value. The DGbind (IC50) values of imatinib for wild-type, Y253H, and T315I kinases were -10.47kcal/mol (21nM), -7.45 kcal/mol (3.4mM), and -6.38 kcal/mol (21mM), similar to published experimental data (25nM, 1.8–3.9mM, and >10mM, respectively), thus validating our modeling. DGbind and IC50 values for imatinib and dasatinib against V304D are -9.86kcal/mol (59nM) and -12.27 kcal/mol (1.02nM), respectively. 3D images generated from an equilibrated frame of 10 ns molecular dynamics (MD) simulations demonstrated that the 304 position is not in direct contact with imatinib, nor does it directly alter imatinib binding. Rather, V304D disturbs the position of the regulatory αC helix (Figure1). Longer standard molecular dynamics simulations coupled with steered MD recipes indicate that V304D induces a rearrangement of the ATP/drug binding pocket and water-mediated disruption of some fundamental hydrogen bonds regulating the transition of the activation loop to a “semi-open” conformation and the apt overall conformation of the SH3-binding segment of the TK (residues K294-F311). Furthermore, a decrease in the number of total interactions causes unidirectional drug translation toward the binding site exit. Iterative simulations revealed significant ATP/inhibitor diversion with subsequent complete imatinib expulsion. Thus, the V304D-induced semi-opened conformation of the activation loop favors 1) the lateral escape of imatinib, thus increasing the rate of TKI dissociating from the kinase and 2) does not allow the passage of ATP to reach deep into the binding pocket, thus hampering tyrosine phosphorylation. A similar phenomenon is observed in the activation loop in the active conformation of the V304D kinase bound to dasatinib, which results in greater exposure to water solvent of a part of the binding site and almost complete loss of hydrophobic contacts in the opposite end of the binding site. Fig. 1 MD snapshots of Imatinib (colored sticks) bound to (top) and “escaped” from (bottom) SCTABLIV304D. The mutant residue D304 is highlighted in yellow. Note the rearrangement of the activation loop, the SH3 binding region, and the helix C, colored blue, spring green, and orange in the lower panel. Some waters and counterions are shown as colored spheres. Fig. 1. MD snapshots of Imatinib (colored sticks) bound to (top) and “escaped” from (bottom) SCTABLIV304D. The mutant residue D304 is highlighted in yellow. Note the rearrangement of the activation loop, the SH3 binding region, and the helix C, colored blue, spring green, and orange in the lower panel. Some waters and counterions are shown as colored spheres. In summary, BCR-ABL1V304D results in kinase inactivation, pan-TKI resistance mediated by a novel mechanism of lateral escape at the kinase domain, less control of protein autoinhibition via perturbation of the SH3 binding domain and very poor prognosis. Complete modeling data against a panel of novel TKIs and potential modes of overcoming this novel mechanism of resistance will be presented. Disclosures: Kantarjian: Bristol Myers Squibb: Research Funding; ARIAD: Research Funding; Nerviano: Research Funding. Cortes:Bristol Myers Squibb: Research Funding; ARIAD: Research Funding; Nerviano: Research Funding.


1988 ◽  
Vol 253 (3) ◽  
pp. 801-807 ◽  
Author(s):  
A M Gronenborn ◽  
R Sandulache ◽  
S Gärtner ◽  
G M Clore

Mutants in the cyclic AMP binding site of the cyclic AMP receptor protein (CRP) of Escherichia coli have been constructed by oligonucleotide-directed mutagenesis. They have been phenotypically characterized and their ability to enhance the expression of catabolite-repressible operons has been tested. In addition, the binding of cyclic nucleotides to the mutants has been investigated. It is shown that the six mutants made fall into one of three classes: (i) those that bind cyclic AMP better than the wild type protein (Ser-62→Ala) and result in greater transcription enhancement; (ii) those that bind cyclic AMP similarly to wild type (Ser-83→Ala, Ser-83→Lys, Thr-127→Ala, Ser-129→Ala); and (iii) those that do not bind cyclic AMP at all (Arg-82→Leu). Implications of these findings with respect to present models of the cyclic nucleotide binding pocket of CRP are discussed.


2017 ◽  
Vol 71 (2) ◽  
pp. 95-97 ◽  
Author(s):  
Alessandro Pietro Aldera ◽  
Dhirendra Govender

Succinate dehydrogenase (SDH) is a heterotetrameric nuclear encoded mitochondrial protein complex which plays a role in the citric acid cycle and the electron transfer chain. Germline mutations in SDHA are associated with Leigh syndrome. Mutations in SDHB, SDHC and SDHD are found in an increasing number of neoplasms, most notably paragangliomas and wild-type gastrointestinal stromal tumours. SDH deficiency in these tumours has important prognostic implications, and also provides a novel target for molecular therapy. In this article, we outline the structure and function of SDH and provide a summary of its role in various diseases.


Sign in / Sign up

Export Citation Format

Share Document