scholarly journals Bovine Leukemia Virus-Induced Lymphocytosis and Increased Cell Survival Mainly Involve the CD11b+B-Lymphocyte Subset in Sheep

1998 ◽  
Vol 72 (5) ◽  
pp. 4413-4420 ◽  
Author(s):  
Nathalie Chevallier ◽  
Madeleine Berthelemy ◽  
Danielle Le Rhun ◽  
Véronique Lainé ◽  
Daniel Levy ◽  
...  

ABSTRACT In this study, we show that bovine leukemia virus (BLV)-induced persistent lymphocytosis (PL) results from the in vivo expansion of the CD11b+ B-lymphocyte population. This subset shares phenotypic characteristics with murine and human B-1 cells. BLV interactions with the sheep B-1-like subset were explored. We found that B-1- and B-2-like cells are initially infected to similar extents. However, in long-term-infected sheep, the viral load is higher in B-1-like cells and only B-1- and not B-2-like cells show increased ex vivo survival compared to that in uninfected sheep. Ex vivo viral expression was found in both B-1- and B-2-like cells, indicating that both cell types support viral replication. Finally, cycloheximide and a protein kinase C inhibitor (H7) that blocks the ex vivo activation of viral expression did not affect the increased survival in B-1-like cells, suggesting that resistance to apoptosis is acquired in vivo. Collectively, these results indicate a peculiar susceptibility of sheep B-1-like cells to BLV transforming effects and further support the involvement of increased survival in BLV pathogenesis.

1999 ◽  
Vol 73 (2) ◽  
pp. 1127-1137 ◽  
Author(s):  
Franck Dequiedt ◽  
Glenn H. Cantor ◽  
Valerie T. Hamilton ◽  
Suzanne M. Pritchard ◽  
William C. Davis ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) is an oncogenic retrovirus associated with B-cell lymphocytosis, leukemia, and lymphosarcoma in the ovine and bovine species. We have recently reported that in sheep, BLV protects the total population of peripheral blood mononuclear cells (PBMCs) from ex vivo spontaneous apoptosis. This global decrease in the apoptosis rates resulted from both direct and indirect mechanisms which allow extension of cell survival. Although sheep are not natural hosts for BLV, these animals are prone to develop virus-induced leukemia at very high frequencies. Most infected cattle, however, remain clinically healthy. This difference in the susceptibilities to development of leukemia in these two species might be related to alterations of the apoptotic processes. Therefore, we designed this study to unravel the mechanisms of programmed cell death in cattle. We have observed that PBMCs from persistently lymphocytotic BLV-infected cows were more susceptible to spontaneous ex vivo apoptosis than cells from uninfected or aleukemic animals. These higher apoptosis rates were the consequence of an increased proportion of B cells exhibiting lower survival abilities. About one-third of the BLV-expressing cells did not survive the ex vivo culture conditions, demonstrating that viral expression is not strictly associated with cell survival in cattle. Surprisingly, culture supernatants from persistently lymphocytotic cows exhibited efficient antiapoptotic properties on both uninfected bovine and uninfected ovine cells. It thus appears that indirect inhibition of cell death can occur even in the presence of high apoptosis rates. Together, these results demonstrate that the protection against spontaneous apoptosis associated with BLV is different in cattle and in sheep. The higher levels of ex vivo apoptosis occurring in cattle might indicate a decreased susceptibility to development of leukemia in vivo.


2001 ◽  
Vol 75 (15) ◽  
pp. 6977-6988 ◽  
Author(s):  
C. Merezak ◽  
C. Pierreux ◽  
E. Adam ◽  
F. Lemaigre ◽  
G. G. Rousseau ◽  
...  

ABSTRACT Repression of viral expression is a major strategy developed by retroviruses to escape from the host immune response. The absence of viral proteins (or derived peptides) at the surface of an infected cell does not permit the establishment of an efficient immune attack. Such a strategy appears to have been adopted by animal oncoviruses such as bovine leukemia virus (BLV) and human T-cell leukemia virus (HTLV). In BLV-infected animals, only a small fraction of the infected lymphocytes (between 1 in 5,000 and 1 in 50,000) express large amounts of viral proteins; the vast majority of the proviruses are repressed at the transcriptional level. Induction of BLV transcription involves the interaction of the virus-encoded Tax protein with the CREB/ATF factors; the resulting complex is able to interact with three 21-bp Tax-responsive elements (TxRE) located in the 5′ long terminal repeat (5′ LTR). These TxRE contain cyclic AMP-responsive elements (CRE), but, remarkably, the “TGACGTCA” consensus is never strictly conserved in any viral strain (e.g.,AGACGTCA, TGACGGCA, TGACCTCA). To assess the role of these suboptimal CREs, we introduced a perfect consensus sequence within the TxRE and showed by gel retardation assays that the binding efficiency of the CREB/ATF proteins was increased. However,trans-activation of a luciferase-based reporter by Tax was not affected in transient transfection assays. Still, in the absence of Tax, the basal promoter activity of the mutated LTR was increased as much as 20-fold. In contrast, mutation of other regulatory elements within the LTR (the E box, NF-κB, and glucocorticoid- or interferon-responsive sites [GRE or IRF]) did not induce a similar alteration of the basal transcription levels. To evaluate the biological relevance of these observations made in vitro, the mutations were introduced into an infectious BLV molecular clone. After injection into sheep, it appeared that all the recombinants were infectious in vivo and did not revert into a wild-type virus. All of them, except one, propagated at wild-type levels, indicating that viral spread was not affected by the mutation. The sole exception was the CRE mutant; proviral loads were drastically reduced in sheep infected with this type of virus. We conclude that a series of sites (NF-κB, IRF, GRE, and the E box) are not required for efficient viral spread in the sheep model, although mutation of some of these motifs might induce a minor phenotype during transient transfection assays in vitro. Remarkably, a provirus (pBLV-Δ21-bp) harboring only two TxRE was infectious and propagated at wild-type levels. And, most importantly, reconstitution of a consensus CRE, within the 21-bp enhancers increases binding of CREB/ATF proteins but abrogates basal repression of LTR-directed transcription in vitro. Suboptimal CREs are, however, essential for efficient viral spread within infected sheep, although these sites are dispensable for infectivity. These results suggest an evolutionary selection of suboptimal CREs that repress viral expression with escape from the host immune response. These observations, which were obtained in an animal model for HTLV-1, are of interest for oncovirus-induced pathogenesis in humans.


2020 ◽  
Vol 117 (30) ◽  
pp. 17510-17512 ◽  
Author(s):  
Jennie B. Altman ◽  
Justin Taft ◽  
Tim Wedeking ◽  
Conor N. Gruber ◽  
Michael Holtmannspötter ◽  
...  

Type I IFN (IFN-I) is thought to be rapidly internalized and degraded following binding to its receptor and initiation of signaling. However, many studies report the persistent effects mediated by IFN-I for days or even weeks, both ex vivo and in vivo. These long-lasting effects are attributed to downstream signaling molecules or induced effectors having a long half-life, particularly in specific cell types. Here, we describe a mechanism explaining the long-term effects of IFN-I. Following receptor binding, IFN-I is siloed into endosomal compartments. These intracellular “IFN silos” persist for days and can be visualized by fluorescence and electron microscopy. However, they are largely dormant functionally, due to IFN-I−induced negative regulators. By contrast, in individuals lacking these negative regulators, such as ISG15 or USP18, this siloed IFN-I can continue to signal from within the endosome. This mechanism may underlie the long-term effects of IFN-I therapy and may contribute to the pathophysiology of type I interferonopathies.


Blood ◽  
1979 ◽  
Vol 53 (5) ◽  
pp. 899-912 ◽  
Author(s):  
JC Bloom ◽  
SJ Kenyon ◽  
TG Gabuzda

We examined the effects of glucocorticoids on peripheral blood lymphocytes (PBL) in lymphoproliferative conditions associated with bovine leukemia virus (BLV): persistent lymphocytosis (PL) and lymphosarcoma cell leukemia (BLSL). The effects of hydrocortisone 21- sodium succinate (HSS) on spontaneous incorporation (SI) and mitogen- stimulated incorporation of radiolabeled-thymidine and the effects of intramuscular administration of prednisolone acetate were studied. An expanded population of B lymphocytes in cows with PL was remarkable sensitive to glucocorticoids in vitro and in vivo. SI was markedly inhibited by concentrations of HSS as low as 10(-7) M. These results correlated well with in vivo observations, where an 80%-90% decrease in PBL occurred during the course of glucocorticoid administration. The decrease in total lymphocytes was accounted for almost entirely by a decrease in the expanded B lymphocyte population. Steroid-sensitive lymphocytes together with steroid-resistant cells were observed in cows with BLSL. The reduction in the steroid-sensitive lymphocytes was associated with rapid disease progression in cows with lymphosarcoma. Steroid-sensitive lymphocyte populations in cows with BLSL may include the same reactive B-cell population found in cows with PL. Glucocorticoids may prove to be a useful tool for study of the immune response to the oncogenic virus and lymphoma in BLV-infected cattle.


Blood ◽  
1979 ◽  
Vol 53 (5) ◽  
pp. 899-912 ◽  
Author(s):  
JC Bloom ◽  
SJ Kenyon ◽  
TG Gabuzda

Abstract We examined the effects of glucocorticoids on peripheral blood lymphocytes (PBL) in lymphoproliferative conditions associated with bovine leukemia virus (BLV): persistent lymphocytosis (PL) and lymphosarcoma cell leukemia (BLSL). The effects of hydrocortisone 21- sodium succinate (HSS) on spontaneous incorporation (SI) and mitogen- stimulated incorporation of radiolabeled-thymidine and the effects of intramuscular administration of prednisolone acetate were studied. An expanded population of B lymphocytes in cows with PL was remarkable sensitive to glucocorticoids in vitro and in vivo. SI was markedly inhibited by concentrations of HSS as low as 10(-7) M. These results correlated well with in vivo observations, where an 80%-90% decrease in PBL occurred during the course of glucocorticoid administration. The decrease in total lymphocytes was accounted for almost entirely by a decrease in the expanded B lymphocyte population. Steroid-sensitive lymphocytes together with steroid-resistant cells were observed in cows with BLSL. The reduction in the steroid-sensitive lymphocytes was associated with rapid disease progression in cows with lymphosarcoma. Steroid-sensitive lymphocyte populations in cows with BLSL may include the same reactive B-cell population found in cows with PL. Glucocorticoids may prove to be a useful tool for study of the immune response to the oncogenic virus and lymphoma in BLV-infected cattle.


2002 ◽  
Vol 76 (10) ◽  
pp. 5034-5042 ◽  
Author(s):  
C. Merezak ◽  
M. Reichert ◽  
C. Van Lint ◽  
P. Kerkhofs ◽  
D. Portetelle ◽  
...  

ABSTRACT Packaging into nucleosomes results in a global transcriptional repression as a consequence of exclusion of sequence-specific factors. This inhibition can be relieved by using inhibitors of histone deacetylases, acetylation being a major characteristic of transcriptionally active chromatin. Paradoxically, the expression of only ∼2% of the total cellular genes is modulated by histone hyperacetylation. To unravel the potential role of this transcriptional control on BLV expression, we tested the effect of two highly specific inhibitors of deacetylases, trichostatin A (TSA) and trapoxin (TPX). Our results demonstrate that treatment with TSA efficiently enhanced long terminal repeat-directed gene expression of integrated reporter constructs in heterologous D17 stable cell lines. To further examine the biological relevance of these observations made in vitro, we analyzed ex vivo-isolated peripheral blood mononuclear cells (PBMCs) from bovine leukemia virus (BLV)-infected sheep. TSA deacetylase inhibitor induced a drastic increase in viral expression at levels comparable to those induced by treatment with phorbol-12-myristate 13-acetate and ionomycin, the most efficient activators of BLV expression known to date. TSA acted directly on BLV-infected B lymphocytes to increase viral expression and does not seem to require T-cell cooperation. Inhibition of deacetylation after treatment with TSA or TPX also significantly increased viral expression in PBMCs from cattle, the natural host for BLV. Together, our results show that BLV gene expression is, like that of a very small fraction of cellular genes, also regulated by deacetylation.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3678
Author(s):  
Vera Chernonosova ◽  
Alexandr Gostev ◽  
Ivan Murashov ◽  
Boris Chelobanov ◽  
Andrey Karpenko ◽  
...  

We examined the physicochemical properties and the biocompatibility and hemocompatibility of electrospun 3D matrices produced using polyurethane Pellethane 2363-80A (Pel-80A) blends Pel-80A with gelatin or/and bivalirudin. Two layers of vascular grafts of 1.8 mm in diameter were manufactured and studied for hemocompatibility ex vivo and functioning in the infrarenal position of Wistar rat abdominal aorta in vivo (n = 18). Expanded polytetrafluoroethylene (ePTFE) vascular grafts of similar diameter were implanted as a control (n = 18). Scaffolds produced from Pel-80A with Gel showed high stiffness with a long proportional limit and limited influence of wetting on mechanical characteristics. The electrospun matrices with gelatin have moderate capacity to support cell adhesion and proliferation (~30–47%), whereas vascular grafts with bivalirudin in the inner layer have good hemocompatibility ex vivo. The introduction of bivalirudin into grafts inhibited platelet adhesion and does not lead to a change hemolysis and D-dimers concentration. Study in vivo indicates the advantages of Pel-80A grafts over ePTFE in terms of graft occlusion, calcification level, and blood velocity after 6 months of implantation. The thickness of neointima in Pel-80A–based grafts stabilizes after three months (41.84 ± 20.21 µm) and does not increase until six months, demonstrating potential for long-term functioning without stenosis and as a suitable candidate for subsequent preclinical studies in large animals.


2021 ◽  
pp. 100201
Author(s):  
Yahia Ismail Khudhair ◽  
Ahmed Majeed Al-Shammari ◽  
Saleem Amin Hasso ◽  
Nahi Yaseen

Sign in / Sign up

Export Citation Format

Share Document