scholarly journals Type I IFN is siloed in endosomes

2020 ◽  
Vol 117 (30) ◽  
pp. 17510-17512 ◽  
Author(s):  
Jennie B. Altman ◽  
Justin Taft ◽  
Tim Wedeking ◽  
Conor N. Gruber ◽  
Michael Holtmannspötter ◽  
...  

Type I IFN (IFN-I) is thought to be rapidly internalized and degraded following binding to its receptor and initiation of signaling. However, many studies report the persistent effects mediated by IFN-I for days or even weeks, both ex vivo and in vivo. These long-lasting effects are attributed to downstream signaling molecules or induced effectors having a long half-life, particularly in specific cell types. Here, we describe a mechanism explaining the long-term effects of IFN-I. Following receptor binding, IFN-I is siloed into endosomal compartments. These intracellular “IFN silos” persist for days and can be visualized by fluorescence and electron microscopy. However, they are largely dormant functionally, due to IFN-I−induced negative regulators. By contrast, in individuals lacking these negative regulators, such as ISG15 or USP18, this siloed IFN-I can continue to signal from within the endosome. This mechanism may underlie the long-term effects of IFN-I therapy and may contribute to the pathophysiology of type I interferonopathies.

2018 ◽  
Vol 98 (1) ◽  
pp. 391-418 ◽  
Author(s):  
Deniz Atasoy ◽  
Scott M. Sternson

Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 2024-2030 ◽  
Author(s):  
Giovanna Schiavoni ◽  
Fabrizio Mattei ◽  
Tiziana Di Pucchio ◽  
Stefano M. Santini ◽  
Laura Bracci ◽  
...  

Abstract In a previous study, we reported that a single injection of cyclophosphamide (CTX) in tumor-bearing mice resulted in tumor eradication when the animals were subsequently injected with tumor-sensitized lymphocytes. Notably, CTX acted by inducing bystander effects on T cells, and the response to the combined CTX/adoptive immunotherapy regimen was inhibited in mice treated with antibodies to mouse interferon (IFN)–/β. In the present study, we have investigated whether CTX induced the expression of type I IFN, and we have characterized the CTX effects on the phenotype of T cells in normal mice. CTX injection resulted in an accumulation of type I IFN messenger RNA in the spleen of inoculated mice, at 24 to 48 hours, that was associated with IFN detection in the majority of the animals. CTX also enhanced the expression of the Ly-6C on spleen lymphocytes. This enhancement was inhibited in mice treated with anti–type I IFN antibodies. Moreover, CTX induced a long-lasting increase in in vivo lymphocyte proliferation and in the percentage of CD44hiCD4+ and CD44hiCD8+T lymphocytes. These results demonstrate that CTX is an inducer of type I IFN in vivo and enhances the number of T cells exhibiting the CD44hi memory phenotype. Since type I IFN has been recently recognized as the important cytokine for the in vivo expansion and long-term survival of memory T cells, we suggest that induction of this cytokine may explain at least part of the immunomodulatory effects observed after CTX treatment. Finally, these findings provide a new rationale for combined treatments with CTX and adoptive immunotherapy in cancer patients.


2019 ◽  
Vol 20 (12) ◽  
pp. 3012 ◽  
Author(s):  
Beatriz Vidal-Villegas ◽  
Johnny Di Pierdomenico ◽  
Juan A Miralles de Imperial-Ollero ◽  
Arturo Ortín-Martínez ◽  
Francisco M Nadal-Nicolás ◽  
...  

We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.


2007 ◽  
Vol 81 (16) ◽  
pp. 8656-8665 ◽  
Author(s):  
Fulvia Terenzi ◽  
Christine White ◽  
Srabani Pal ◽  
Bryan R. G. Williams ◽  
Ganes C. Sen

ABSTRACT The interferon-stimulated genes (ISGs) ISG56 and ISG54 are strongly induced in cultured cells by type I interferons (IFNs), viruses, and double-stranded RNA (dsRNA), which activate their transcription by various signaling pathways. Here we studied the stimulus-dependent induction of both genes in vivo. dsRNA, which is generated during virus infection, induced the expression of both genes in all organs examined. Induction was not seen in STAT1-deficient mice, indicating that dsRNA-induced gene expression requires endogenous IFN. We further examined the regulation of these ISGs in several organs from mice injected with dsRNA or IFN-β. Both ISG56 and ISG54 were widely expressed and at comparable levels. However, in organs isolated from mice injected with IFN-α the expression of ISG54 was reduced and more restricted in distribution compared with the expression level and distribution of ISG56. When we began to study specific cell types, splenic B cells showed ISG54 but not ISG56 expression in response to all agonists. Finally, in livers isolated from mice infected with vesicular stomatitis virus, the expression of ISG56, but not ISG54, was induced; this difference was observed at both protein and mRNA levels. These studies have revealed unexpected complexity in IFN-stimulated gene induction in vivo. For the first time we showed that the two closely related genes are expressed in a tissue-specific and inducer-specific manner. Furthermore, our findings provide the first evidence of a differential pattern of expression of ISG54 and ISG56 genes by IFN-α and IFN-β.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Wagstaff ◽  
Anneloor L. M. A. ten Asbroek ◽  
Jacoline B. ten Brink ◽  
Nomdo M. Jansonius ◽  
Arthur A. B. Bergen

AbstractGenetically complex ocular neuropathies, such as glaucoma, are a major cause of visual impairment worldwide. There is a growing need to generate suitable human representative in vitro and in vivo models, as there is no effective treatment available once damage has occured. Retinal organoids are increasingly being used for experimental gene therapy, stem cell replacement therapy and small molecule therapy. There are multiple protocols for the development of retinal organoids available, however, one potential drawback of the current methods is that the organoids can take between 6 weeks and 12 months on average to develop and mature, depending on the specific cell type wanted. Here, we describe and characterise a protocol focused on the generation of retinal ganglion cells within an accelerated four week timeframe without any external small molecules or growth factors. Subsequent long term cultures yield fully differentiated organoids displaying all major retinal cell types. RPE, Horizontal, Amacrine and Photoreceptors cells were generated using external factors to maintain lamination.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Chun-Yang Lin ◽  
Meng-Cen Shih ◽  
Hung-Chun Chang ◽  
Kuan-Jung Lin ◽  
Lin-Fang Chen ◽  
...  

Abstract Background Influenza A virus (IAV) evolves strategies to counteract the host antiviral defense for establishing infection. The influenza A virus (IAV) non-structural protein 1 (NS1) is a key viral factor shown to counteract type I IFN antiviral response mainly through targeting RIG-I signaling. Growing evidence suggests that viral RNA sensors RIG-I, TLR3, and TLR7 function to detect IAV RNA in different cell types to induce type I IFN antiviral response to IAV infection. Yet, it remains unclear if IAV NS1 can exploit a common mechanism to counteract these RNA sensing pathways to type I IFN production at once, then promoting viral propagation in the host. Methods Luciferase reporter assays were conducted to determine the effect of NS1 and its mutants on the RIG-I and TLR3 pathways to the activation of the IFN-β and NF-κB promoters. Coimmunoprecipitation and confocal microscopic analyses were used to the interaction and colocalization between NS1 and TRAF3. Ubiquitination assays were performed to study the effect of NS1 and its mutants on TRAF3 ubiquitination. A recombinant mutant virus carrying NS1 E152A/E153A mutations was generated by reverse genetics for biochemical, ex vivo, and in vivo analyses to explore the importance of NS1 E152/E153 residues in targeting the RNA sensing-TRAF3-type I IFN axis and IAV pathogenicity. Results Here we report that NS1 subverts the RIG-I, TLR3, and TLR7 pathways to type I IFN production through targeting TRAF3 E3 ubiquitin ligase. NS1 harbors a conserved FTEE motif (a.a. 150-153), in which the E152/E153 residues are critical for binding TRAF3 to block TRAF3 ubiquitination and type I IFN production by these RNA sensing pathways. A recombinant mutant virus carrying NS1 E152A/E153A mutations induces higher type I IFN production ex vivo and in vivo, and exhibits the attenuated phenotype in infected mice, indicating the importance of E152/E153 residues in IAV pathogenicity. Conclusions Together our work uncovers a novel mechanism of IAV NS1-mediated immune evasion to promote viral infection through targeting the RNA sensing-TRAF3-type I IFN axis.


Author(s):  
Purnima Singh ◽  
Tanmay Mondal ◽  
Kuldeep Kumar ◽  
Kinsuk Das ◽  
N Mahalakshmi ◽  
...  

Induced Pluripotent stem cells (iPSC) have a high ability to renew and differentiate themselves into various lineages and as vehicles of cell based therapy. Stem cell can differentiate under appropriate in vitro and in vivo conditions into different cell types. This study described the establishment of condition for in vitro expression of alpha MHC gene in cardiac differentiated canine iPSC (ciPSC). In vitro differentiation of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated by using IMDM differentiation media: FBS – 10%, NEAA (100X) – 0.5%, Â-Mercaptoethanol- 100mM, Gentamycin- 5µg/ml supplemented with Azacytidine- 0.5µM. During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 for characterization of cardiomyocytes specific marker expression. Total RNA from EBs were extracted by using Trizol method and subsequently cDNA were synthesized. The differentiated cells expressed cardiac specific gene (Alpha MHC) which started from day 6 of differentiation upto day 24 Immunocytochemistry and relative expression of cardiac specific genes revealed that ciPSC have the potential to differentiate into cardiomyocytes which can be used for cardiac tissue regeneration and as disease models for pharmaceutical testing.


2019 ◽  
Author(s):  
Ana Miar ◽  
Esther Arnaiz ◽  
Esther Bridges ◽  
Shaunna Beedie ◽  
Adam P Cribbs ◽  
...  

AbstractHypoxia is a common phenomenon in solid tumours and is considered a hallmark of cancer. Increasing evidence shows that hypoxia promotes local immune suppression. Type I IFN is involved in supporting cytotoxic T lymphocytes by stimulating the maturation of dendritic cells (DCs) and enhancing their capacity to process and present antigens. However, there is little information about the relationship between hypoxia and the type I interferon (IFN) pathway, which comprises the sensing of double-stranded RNA and DNA (dsRNA/dsDNA), followed by IFNα/β secretion and transcription activation of IFN-stimulated genes (ISGs). The aims of this study were to determine both the effect and mechanisms of hypoxia on the I IFN pathway in breast cancer.There was a downregulation of the type I IFN pathway expression at mRNA and protein level in cancer cell lines under hypoxia in vitro and in vivo in xenografts. This pathway was suppressed at each level of signalling, from the dsRNA sensors (RIG-I, MDA5), the adaptor (MAVS), transcription factors (IRF3, IRF7, STAT1) and several ISGs (RIG-I, IRF7, STAT1, ADAR-p150). There was also lower IFN secretion under hypoxic conditions. HIF1 and HIF2 regulation of gene expression did not explain most of the effects. However, ATAC-Seq data revealed that in hypoxia peaks with STAT1 and IRF3 motifs had decreased accessibility.Thus hypoxia leads to an overall 50% downregulation of the type I IFN pathway due to repressed transcription and lower chromatin accessibility in a HIF1/2α-independent manner, which could contribute to immunosuppression in hypoxic tumours.


Author(s):  
Beatriz Vidal-Villegas ◽  
Johnny Di Pierdomenico ◽  
Juan Antonio Miralles de Imperial-Ollero ◽  
Arturo Ortín-Martínez ◽  
Francisco Manuel Nadal-Nicolás ◽  
...  

We studied short- and long-term effects of intravitreal injection of N-methyl-D-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received  a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using SD-OCT.  Ex vivo analyses were done at 3, 7, 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for Brn3a and melanopsin, the total number of Brn3a+RGCs and m+RGCs were quantified and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903±3,572 and 2,358±144 (mean ± SD; n=10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 50% and 25%, at 3 and 14 days, respectively, but there was no further loss up to 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3-7 days and was back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induce a rapid loss of 75% of Brn3a+RGCs, a transient downregulation of melanopsin expression but not m+RGC death, and a thinning of the inner retinal layers.


Sign in / Sign up

Export Citation Format

Share Document