scholarly journals Overexpression of Cyclin A Inhibits Augmentation of Recombinant Adeno-Associated Virus Transduction by the Adenovirus E4orf6 Protein

1999 ◽  
Vol 73 (12) ◽  
pp. 10010-10019 ◽  
Author(s):  
Mirta Grifman ◽  
Nancie N. Chen ◽  
Guang-ping Gao ◽  
Toni Cathomen ◽  
James M. Wilson ◽  
...  

ABSTRACT The 34-kDa product of adenovirus E4 region open reading frame 6 (E4orf6) dramatically enhances transduction by recombinant adeno-associated virus vectors (rAAV). This is achieved by promoting the conversion of incoming single-stranded viral genomes into transcriptionally competent duplex molecules. The molecular mechanism for enhancing second-strand synthesis is not fully understood. In this study, we analyzed the cellular consequences of E4orf6 expression and the requirements for efficient rAAV transduction mediated by E4orf6. Expression of E4orf6 in 293 cells led to an inhibition of cell cycle progression and an accumulation of cells in S phase. This was preceded by specific degradation of cyclin A and p53, while the levels of other proteins involved in cell cycle control remained unchanged. In addition, the kinase activity of cdc2 was inhibited. We further showed that p53 expression is not necessary or inhibitory for augmentation of rAAV transduction by E4orf6. However, overexpression of cyclin A inhibited E4orf6-mediated enhancement of rAAV transduction. A cyclin A mutant incapable of recruiting protein substrates for cdk2 was unable to inhibit E4orf6-mediated augmentation. In addition, we created an E4orf6 mutant that is selectively defective in rAAV augmentation of transduction. Based on these findings, we suggest that cyclin A degradation represents a viral mechanism to disrupt cell cycle progression, resulting in enhanced viral transduction. Understanding the cellular pathways used during transduction will increase the utility of rAAV vectors in a wide range of gene therapy applications.

2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACT RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 316-316
Author(s):  
Lequn Li ◽  
Wayne R. Godfrey ◽  
Stephen B. Porter ◽  
Ying Ge ◽  
Carle H. June ◽  
...  

Abstract CD4+CD25+ regulatory T cells (Tr) are negative regulators of immune responses. Studies of human Tr are restricted by their small numbers in peripheral blood and their hypoproliferative state. A recently established method achieved in vitro expansion and generation of Tr cell lines (Godfrey et al; Blood 2004,104:453-61). This approach facilitates the evaluation of cultured Tr cells as a novel form of immunosuppressive therapy and provides a system for molecular analysis of Tr. Activation of Ras and MAP kinases is mandatory for IL-2 production, viability and cell cycle progression of T cells. In anergic T cells activation of these signaling events is impaired, whereas activation of Rap1 is retained. Subsequently, anergic cells have defective IL-2 production, impaired cell cycle progression, and increased susceptibility to apoptosis. In the current study, we sought to determine the signaling and biochemical properties of Tr. Human CD4+CD25+ (Tr) and control CD4+CD25− (Tc) cell lines were generated from human cord blood cells. We examined activation of Ras, Rap1 and MAP kinases as well as cell cycle progression and cell viability, in response to TCR/CD3-plus-CD28 mediated stimulation. Stimulation was done for 15 min, 2 and 16 hrs for assessment of signaling events or for 24, 48 and 72 hrs for assessment of cell cycle progression and viability. Although activation of Rap1 was not affected, activation of Ras was reduced in Tr as compared to Tc. Activation of JNK and Erk1/2 MAP kinases was also significantly impaired. Both Tr and Tc entered the cell cycle and expressed cyclin E and cyclin A at 24 and 48 hrs of culture. However, p27 was downregulated only in Tc and not in Tr and hyperphosphorylation of Rb, which is the hallmark of cell cycle progression, was detected only in the Tc and not in the Tr population. At 72 hrs of culture, expression of cyclin E and cyclin A was dramatically diminished in Tr whereas it remained unchanged in Tc. More strikingly, expression of p27 in Tr was increased to levels higher than background. Since Tr do not produce IL-2, we examined whether addition of exogenous IL-2 would downregulate p27 and rescue Tr from defective cell cycle progression, similarly to its effect on anergic cells. Addition of exogenous IL-2 resulted in decrease of p27, sustained increase of cyclin E and cyclin A and cell cycle progression. Besides inhibiting cell cycle progression, p27 also promotes apoptosis. Therefore, we examined whether Tr had a higher susceptibility to apoptosis. As determined by Annexin V staining, Tr had a high degree of apoptosis only at 72 hrs of culture, when p27 expression was highly upregulated. Exogenous IL-2 reversed both p27 upregulation and apoptosis. Addition of IL-2 to Tr, also resulted in sustained IL-2-receptor-mediated activation of Erk1/2 at levels equivalent to those of Tc. Thus Tr cells share many biochemical and molecular characteristics of anergy, including defective TCR/CD3-plus-CD28-mediated activation of Ras and MAP kinases, increased expression of p27, defective cell cycle progression and high susceptibility to apoptosis. Moreover, these results suggest that TCR/CD3-mediated and IL-2 receptor-mediated signals converge at the level of MAP kinases to determine the fate of Tr cells towards expansion or cell cycle arrest and subsequent apoptosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1322-1322
Author(s):  
Wei Du ◽  
Yun Zhou ◽  
Suzette Pike ◽  
Qishen Pang

Abstract An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CKD) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Cells expressing the phosphomimetic NPM mutants showed enhanced proliferation and G2/M cell-cycle transition; whereas nonphosphorylatable mutants induced G2/M cell-cycle arrest. Simultaneous inactivation of two CKD phosphorylation sites at Ser10 and Ser70 (S10A/S70A, NPM-AA) induced phosphorylation of Cdk1 at Tyr15 (Cdc2Tyr15) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1Tyr15 and Cdc25C sequestration were completely suppressed by expression of a double phosphomimetic NPM mutant (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 sites were required for proper interaction between Cdk1 and Cdc25C in mitotic cells. Moreover, the NPM-EE mutant directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G2/M arrest, increased peripheral-blood blasts and splenomegaly in a NOD/SCID xenograft model, and promoted leukemia development in Fanconi mouse hematopoietic stem/progenitor cells. Thus, these findings reveal a novel function of NPM on regulation of cell-cycle progression, in which Cdk1-dependent phosphorylation of NPM controls cell-cycle progression at G2/M transition through modulation of Cdc25C activity.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 970-970 ◽  
Author(s):  
Andrea E. Wahner Hendrickson ◽  
Mamta Gupta ◽  
Seongseok Yun ◽  
Jennifer C. Shing ◽  
Paula A. Schneider ◽  
...  

Abstract Abstract 970 The mammalian target of rapamycin, mTOR, is a highly conserved serine/threonine kinase known to play a role in regulating mRNA translation, cell cycle progression, cell proliferation and apoptosis. As a downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, mTOR is a component of two distinct complexes, TORC1 and TORC2. While TORC1 facilitates cell cycle progression from G1 into S phase by phosphorylating p70S6 kinase and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), TORC2 catalyzes the activating phosphorylation of Akt on Ser473, providing a feedback loop for further activation of mTOR. Phase II trials have shown activity of the TORC1-selective inhibitor rapamycin and its analogs in a wide range of lymphoma subtypes. The purpose of this study was to evaluate the anti-proliferative and pro-apoptotic effects of the dual TORC1/TORC2 inhibitor OSI-027 in human neoplastic lymphoid cells in vitro. MTS assays demonstrated that OSI-027 inhibited proliferation in a wide range of lymphoid lines, including SeAx (Sezary syndrome), DoHH2 (large cell lymphoma), RL (follicular lymphoma) and Jurkat (T cell ALL), as well as clinical lymphoma and T cell ALL samples, with IC50 values ranging from 0.078 to 10 μM. Propidium iodide staining followed by flow cytometry for subdiploid cells revealed induction of apoptosis within 48 h of treatment with OSI-027 (but not rapamycin) in SeAx, DoHH2, and Jurkat cells. Examination of Jurkat variants with alterations in key proteins involved in the death receptor versus mitochondrial pathway revealed diminished apoptotic responses to OSI-027 when Bcl-2 was overexpressed or caspase 9 was silenced, indicating involvement of the mitochondrial pathway. Immunoblotting for Bcl-2 family members revealed upregulation of Bim and Puma after a 48-hour exposure to OSI-027 but not rapamycin. This upregulation was also seen at the mRNA level, with a 12- to 20-fold increase in Puma mRNA and 4- to 12-fold induction of Bim mRNA. Small interfering RNA (siRNA)-mediated knockdown of Bim and Puma significantly diminished the apoptotic response to OSI-027. Because the Foxo3a transcription factor has been implicated in Bim and Puma expression and is known to be activated when Akt is inhibited, we next examined whether Bim and Puma induction was Foxo3a-dependent. Luciferase reporter assays showed that OSI-027 activated the full-length Puma and Bim promoters and that this activation was diminished when the Foxo3a binding sites were deleted or mutated. In addition, OSI-027 induced nuclear translocation of Foxo3a, while Foxo3a siRNA diminished OSI-027-induced apoptosis in Jurkat cells. Collectively, these results indicate that OSI-027 inhibits proliferation and induces apoptosis in a wide range of neoplastic lymphoid cells through a process that involves Foxo3a-mediated upregulation of Bim and Puma. These results also suggest that dual inhibition of TORC1 and TORC2 may be an effective treatment strategy in lymphoid malignancy. Disclosures: Barr: OSI Pharmaceuticals: Employment. Witzig:Novartis and Celgene: Patents & Royalties, Research Funding, Served on advisory boards with Novartis and Celgene – both uncompensated with compensation to Mayo Clinic.


2018 ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACTRASSF6 is a member of the tumor suppressor Ras-association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers and its low expression is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in the p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we have revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression through suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73-target genes via pRb and E2F1 in the p53-negative background. Finally, we confirmed that RASSF6 depletion induces polypoid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with the loss-of-function of p53, and pRb is implicated in this function of RASSF6.


1998 ◽  
Vol 72 (5) ◽  
pp. 3729-3741 ◽  
Author(s):  
Bryan S. Salvant ◽  
Elizabeth A. Fortunato ◽  
Deborah H. Spector

ABSTRACT Human cytomegalovirus (HCMV) infection inhibits cell cycle progression and alters the expression of cyclins E, A, and B (F. M. Jault, J.-M. Jault, F. Ruchti, E. A. Fortunato, C. Clark, J. Corbeil, D. D. Richman, and D. H. Spector, J. Virol. 69:6697–6704, 1995). In this study, we examined cell cycle progression, cyclin gene expression, and early viral events when the infection was initiated at different points in the cell cycle (G0, G1, and S). In all cases, infection led to cell cycle arrest. Cells infected in G0 or G1phase also showed a complete or partial absence, respectively, of cellular DNA synthesis at a time when DNA synthesis occurred in the corresponding mock-infected cells. In contrast, when cells were infected near or during S phase, many cells were able to pass through S phase and undergo mitosis prior to cell cycle arrest. S-phase infection also produced a delay in the appearance of the viral cytopathic effect and in the synthesis of immediate-early and early proteins. Labeling of cells with bromodeoxyuridine immediately prior to HCMV infection in S phase revealed that viral protein expression occurred primarily in cells which were not engaged in DNA synthesis at the time of infection. The viral-mediated induction of cyclin E, maintenance of cyclin-B protein levels, and inhibitory effects on the accumulation of cyclin A were not significantly affected when infection occurred during different phases of the cell cycle (G0, G1, and S). However, there was a delay in the observed inhibition of cyclin A in cells infected during S phase. This finding was in accord with the pattern of cell cycle progression and delay in viral gene expression associated with S-phase infection. Analysis of the mRNA revealed that the effects of the virus on cyclin E and cyclin A, but not on cyclin B, were primarily at the transcriptional level.


1998 ◽  
Vol 72 (10) ◽  
pp. 8133-8142 ◽  
Author(s):  
Yunquan Jiang ◽  
Ashfaque Hossain ◽  
Maria Teresa Winkler ◽  
Todd Holt ◽  
Alan Doster ◽  
...  

ABSTRACT Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.


2020 ◽  
Vol 21 (3) ◽  
pp. 709
Author(s):  
Javier Manzano-López ◽  
Fernando Monje-Casas

The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1347 ◽  
Author(s):  
Mingyu Kang ◽  
Hyeon Ji Kim ◽  
Tae-Jun Kim ◽  
Jin-Seok Byun ◽  
Jae-Ho Lee ◽  
...  

The discovery of novel and critical genes implicated in malignant development is a topic of high interest in cancer research. Intriguingly, a group of genes named “double-agent” genes were reported to have both oncogenic and tumor-suppressive functions. To date, less than 100 “double-agent” genes have been documented. Fubp1 is a master transcriptional regulator of a subset of genes by interacting with a far upstream element (FUSE). Mounting evidence has collectively demonstrated both the oncogenic and tumor suppressive roles of Fubp1 and the debate regarding its roles in tumorigenesis has been around for several years. Therefore, the detailed molecular mechanisms of Fubp1 need to be determined in each context. In the present study, we showed that the Fubp1 protein level was enriched in the S phase and we identified that Fubp1 deficiency altered cell cycle progression, especially in the S phase, by downregulating the mRNA expression levels of Ccna genes encoding cyclin A. Although this Fubp1-cyclin A axis appears to exist in several types of tumors, Fubp1 showed heterogeneous expression patterns among various cancer tissues, suggesting it exhibits multiple and complicated functions in cancer development. In addition, we showed that Fubp1 deficiency confers survival advantages to cells against metabolic stress and anti-cancer drugs, suggesting that Fubp1 may play both positive and negative roles in malignant development.


Sign in / Sign up

Export Citation Format

Share Document