scholarly journals Retrovirus Vectors Bearing Jaagsiekte Sheep Retrovirus Env Transduce Human Cells by Using a New Receptor Localized to Chromosome 3p21.3

2000 ◽  
Vol 74 (10) ◽  
pp. 4698-4704 ◽  
Author(s):  
Sharath K. Rai ◽  
James C. DeMartini ◽  
A. Dusty Miller

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) is a type D retrovirus associated with a contagious lung tumor of sheep, ovine pulmonary carcinoma. Other than sheep, JSRV is known to infect goats, but there is no evidence of human infection. Until now it has not been possible to study the host range for JSRV because of the inability to grow this virus in culture. Here we show that the JSRV envelope protein (Env) can be used to pseudotype Moloney murine leukemia virus (MoMLV)-based retrovirus vectors and that such vectors can transduce human cells in culture. We constructed hybrid retrovirus packaging cells that express the JSRV Env and the MoMLV Gag-Pol proteins and can produce JSRV-pseudotype vectors at titers of up to 106 alkaline phosphatase-positive focus-forming units/ml. Using this high-titer virus, we have studied the host range for JSRV, which includes sheep, human, monkey, bovine, dog, and rabbit cells but not mouse, rat, or hamster cells. Considering the inability of the JSRV-pseudotype vector to transduce hamster cells, we used the hamster cell line-based Stanford G3 panel of whole human genome radiation hybrids to phenotypically map the JSRV receptor (JVR) gene within the p21.3 region of human chromosome 3. JVR is likely a new retrovirus receptor, as none of the previously identified retrovirus receptors localizes to the same position. Several chemokine receptors that have been shown to serve as coreceptors for lentivirus infection are clustered in the same region of chromosome 3; however, careful examination shows that the JSRV receptor does not colocalize with any of these genes.

1998 ◽  
Vol 72 (4) ◽  
pp. 3155-3160 ◽  
Author(s):  
Rouven J. Wool-Lewis ◽  
Paul Bates

ABSTRACT Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 × 106 infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.


2007 ◽  
Vol 81 (22) ◽  
pp. 12218-12226 ◽  
Author(s):  
Jennifer Lin ◽  
Bryan R. Cullen

ABSTRACT The question of whether retroviruses, including human immunodeficiency virus type 1 (HIV-1), interact with the cellular RNA interference machinery has been controversial. Here, we present data showing that neither HIV-1 nor human T-cell leukemia virus type 1 (HTLV-1) expresses significant levels of either small interfering RNAs or microRNAs in persistently infected T cells. We also demonstrate that the retroviral nuclear transcription factors HIV-1 Tat and HTLV-1 Tax, as well as the Tas transactivator encoded by primate foamy virus, fail to inhibit RNA interference in human cells. Moreover, the stable expression of physiological levels of HIV-1 Tat did not globally inhibit microRNA production or expression in infected human cells. Together, these data argue that HIV-1 and HTLV-1 neither induce the production of viral small interfering RNAs or microRNAs nor repress the cellular RNA interference machinery in infected cells.


2005 ◽  
Vol 79 (2) ◽  
pp. 966-977 ◽  
Author(s):  
C. L. Afonso ◽  
G. Delhon ◽  
E. R. Tulman ◽  
Z. Lu ◽  
A. Zsak ◽  
...  

ABSTRACT Deerpox virus (DPV), an uncharacterized and unclassified member of the Poxviridae, has been isolated from North American free-ranging mule deer (Odocoileus hemionus) exhibiting mucocutaneous disease. Here we report the genomic sequence and comparative analysis of two pathogenic DPV isolates, W-848-83 (W83) and W-1170-84 (W84). The W83 and W84 genomes are 166 and 170 kbp, containing 169 and 170 putative genes, respectively. Nucleotide identity between DPVs is 95% over the central 157 kbp. W83 and W84 share similar gene orders and code for similar replicative, structural, virulence, and host range functions. DPV open reading frames (ORFs) with putative virulence and host range functions include those similar to cytokine receptors (R), including gamma interferon receptor (IFN-γR), interleukin 1 receptor (IL-1R), and type 8 CC-chemokine receptors; cytokine binding proteins (BP), including IL-18BP, IFN-α/βBP, and tumor necrosis factor binding protein (TNFBP); serpins; and homologues of vaccinia virus (VACV) E3L, K3L, and A52R proteins. DPVs also encode distinct forms of major histocompatibility complex class I, C-type lectin-like protein, and transforming growth factor β1 (TGF-β1), a protein not previously described in a mammalian chordopoxvirus. Notably, DPV encodes homologues of cellular endothelin 2 and IL-1R antagonist, novel poxviral genes also likely involved in the manipulation of host responses. W83 and W84 differ from each other by the presence or absence of five ORFs. Specifically, homologues of a CD30 TNFR family protein, swinepox virus SPV019, and VACV E11L core protein are absent in W83, and homologues of TGF-β1 and lumpy skin disease virus LSDV023 are absent in W84. Phylogenetic analysis indicates that DPVs are genetically distinct from viruses of other characterized poxviral genera and that they likely comprise a new genus within the subfamily Chordopoxvirinae.


2014 ◽  
Vol 47 (3) ◽  
pp. 302-306 ◽  
Author(s):  
Samara Tatielle Monteiro Gomes ◽  
Luciana Imbiriba ◽  
Rommel Rodriguéz Burbano ◽  
Artur Luiz da Costa Silva ◽  
Rosimar Neris Martins Feitosa ◽  
...  

2006 ◽  
Vol 80 (5) ◽  
pp. 2100-2105 ◽  
Author(s):  
Luca D. Passerini ◽  
Zuzana Keckesova ◽  
Greg J. Towers

ABSTRACT The restriction factors Fv1 and TRIM5α provide dominant blocks to retroviral infection, targeting incoming capsids at a postentry, preintegration step. They both restrict N-tropic murine leukemia virus with similar specificity yet act at different points in the viral life cycle. TRIM5α-restricted virus is usually unable to reverse transcribe, whereas Fv1-restricted virus reverse transcribes normally. Here we investigate the relationship between these two restriction factors by expressing Fv1 alleles in human cells. We demonstrate that Fv1 is able to compete with TRIM5α for virus before reverse transcription. In human cells expressing Fv1b, N-tropic restricted virus becomes less infectious but reverse transcribes more efficiently, indicating competition between the two antiviral molecules and protection of the virus from TRIM5α by Fv1. Our findings suggest that, like TRIM5α, Fv1 interacts with virus before reverse transcription, but the consequences of this interaction are not realized until a later stage of the life cycle. We also demonstrate that Fv1 is functionally independent of TRIM5α when expressed in human cells.


2001 ◽  
Vol 75 (10) ◽  
pp. 4490-4498 ◽  
Author(s):  
Vladimir Prassolov ◽  
Sibyll Hein ◽  
Marion Ziegler ◽  
Dmitry Ivanov ◽  
Carsten Münk ◽  
...  

ABSTRACT Murine leukemia virus (MuLV) M813 was originally isolated from the Southeast Asian rodent Mus cervicolor. As with the ecotropic MuLVs derived from Mus musculus, its host range is limited to rodent cells. Earlier studies have mapped its receptor to chromosome 2, but it has not been established whether M813 shares a common receptor with any other MuLVs. In this study, we have performed interference assays with M813 and viruses from four interference groups of MuLV. The infection efficiency of M813 was not compromised in cells expressing any one of the other MuLVs, demonstrating that M813 must use a distinct receptor for cell entry. The entire M813 env coding region was molecularly cloned. Sequence analysis revealed high similarity with other MuLVs but with a unique receptor-binding domain. Substitution of M813env sequences in Moloney MuLV resulted in a replication-competent virus with a host range and interference profile similar to those of the biological clone M813. M813 thus defines a novel receptor interference group of type C MuLVs.


2020 ◽  
pp. 830-845
Author(s):  
Shannan Lee Rossi ◽  
Nikos Vasilakis

The family Flaviviridae currently consists of four recognized genera: Flavivirus, Pestivirus, Hepacivirus, and Pegivirus. Although members of the family have a large host range that includes both vertebrates and invertebrates, only members of the genus Flavivirus are known as arboviruses, vectored either by mosquitoes or ticks. The remaining genera in the family are exclusively found in mammals, and their diversity has greatly expanded with recent virus discoveries. The genus Flavivirus comprises 92 virus species, of which over 40 can cause human infection. Many of these include important human pathogens such as Zika, dengue, yellow fever, West Nile, and Japanese encephalitis virus.


1998 ◽  
Vol 72 (6) ◽  
pp. 5296-5302 ◽  
Author(s):  
Martin Spiegel ◽  
Michael Bitzer ◽  
Andrea Schenk ◽  
Heidi Rossmann ◽  
Wolfgang J. Neubert ◽  
...  

ABSTRACT Mixed infection of cells with both Moloney murine leukemia virus (MoMLV) and related or heterologous viruses produces progeny pseudotype virions bearing the MoMLV genome encapsulated by the envelope of the other virus. In this study, pseudotype formation between MoMLV and the prototype parainfluenza virus Sendai virus (SV) was investigated. We report for the first time that SV infection of MoMLV producer cells results in the formation of MoMLV(SV) pseudotypes, which display a largely extended host range compared to that of MoMLV particles. This could be associated with SV hemagglutinin-neuraminidase (SV-HN) glycoprotein incorporation into MoMLV envelopes. In contrast, solitary incorporation of the other SV glycoprotein, SV fusion protein (SV-F), resulted in a distinct and narrow extension of the MoMLV host range to asialoglycoprotein receptor (ASGP-R)-positive cells (e.g., cultured human hepatoma cells). Since stably ASGP-R cDNA-transfected MDCK cells, but not parental ASGP-R-negative MDCK cells, were found to be transduced by MoMLV(SV-F) pseudotypes and transduction of ASGP-R-expressing cells was found to be inhibited by ASGP-R antiserum, a direct proof for the ASGP-R-restricted tropism of MoMLV(SV-F) pseudotypes was provided. Cultivation of ASGP-R-positive HepG2 hepatoma cells on Transwell-COL membranes led to a significant enhancement of MoMLV(SV-F) titers in subsequent flowthrough transduction experiments, thereby suggesting the importance of ASGP-R accessibility at the basolateral domain for MoMLV(SV-F) pseudotype transduction. The availability of such ASGP-R-restricted MoMLV(SV-F)-pseudotyped vectors opens up new perspectives for future liver-restricted therapeutic gene transfer applications.


2020 ◽  
Vol 117 (7) ◽  
pp. 3759-3767 ◽  
Author(s):  
Chen Peng ◽  
Bernard Moss

Modified vaccinia virus Ankara (MVA), a widely used vaccine vector for expression of genes of unrelated pathogens, is safe, immunogenic, and can incorporate large amounts of added DNA. MVA was derived by extensively passaging the chorioallantois vaccinia virus Ankara (CVA) vaccine strain in chicken embryo fibroblasts during which numerous mutations and deletions occurred with loss of replicative ability in most mammalian cells. Restoration of the deleted C12L gene, encoding serine protease inhibitor 1, enhances replication of MVA in human MRC-5 cells but only slightly in other human cells. Here we show that repair of the inactivated C16L/B22R gene of MVA enhances replication in numerous human cell lines. This previously uncharacterized gene is present at both ends of the genome of many orthopoxviruses and is highly conserved in most, including smallpox and monkeypox viruses. The C16L/B22R gene is expressed early in infection from the second methionine of the previously annotated Copenhagen strain open reading frame (ORF) as a 17.4-kDa protein. The C16/B22 and C12 proteins together promote MVA replication in human cells to levels that are comparable to titers in chicken embryo fibroblasts. Both proteins enhance virion assembly, but C16/B22 increases proteolytic processing of core proteins in A549 cells consistent with higher infectious virus titers. Furthermore, human A549 cells expressing codon-optimized C16L/B22R and C12L genes support higher levels of MVA replication than cell lines expressing neither or either alone. Identification of the genes responsible for the host-range defect of MVA may allow more rational engineering of vaccines for efficacy, safety, and propagation.


Sign in / Sign up

Export Citation Format

Share Document