scholarly journals Role of CD8+ Lymphocytes in Control and Clearance of Measles Virus Infection of Rhesus Monkeys

2003 ◽  
Vol 77 (7) ◽  
pp. 4396-4400 ◽  
Author(s):  
Sallie R. Permar ◽  
Sherry A. Klumpp ◽  
Keith G. Mansfield ◽  
Woong-Ki Kim ◽  
Darci A. Gorgone ◽  
...  

ABSTRACT The creation of an improved vaccine for global measles control will require an understanding of the immune mechanisms of measles virus containment. To assess the role of CD8+ cytotoxic T lymphocytes in measles virus clearance, rhesus monkeys were depleted of CD8+ lymphocytes by monoclonal anti-CD8 antibody infusion and challenged with wild-type measles virus. The CD8+ lymphocyte-depleted animals exhibited a more extensive rash, higher viral loads at the peak of virus replication, and a longer duration of viremia than did the control antibody-treated animals. These findings indicate a central role for CD8+ lymphocytes in the control of measles virus infections and the importance of eliciting a cell-mediated immune response in new measles vaccine strategies.

2013 ◽  
Vol 87 (14) ◽  
pp. 7816-7827 ◽  
Author(s):  
R. Shivakoti ◽  
M. Siwek ◽  
D. Hauer ◽  
K. L. W. Schultz ◽  
D. E. Griffin

1999 ◽  
Vol 6 (2) ◽  
pp. 178-180 ◽  
Author(s):  
Rita F. Helfand ◽  
Senait Kebede ◽  
Howard E. Gary ◽  
Hagos Beyene ◽  
William J. Bellini

ABSTRACT A standard method for diagnosing measles is to detect measles-specific immunoglobulin M (IgM) in the serum of infected persons. Interpreting a positive IgM result from a person with suspected measles can be difficult if the person has recently received a measles vaccine. We have previously demonstrated that measles-specific IgM may persist for at least 8 weeks after primary vaccination, but it is unknown how quickly IgM appears. This study determined the timing of the rise of measles-specific IgM and IgG after primary measles vaccination with Schwartz vaccine. Two hundred eighty 9-month-old children from Ethiopia presenting for routine measles vaccination were enrolled. Sera were collected before and either 1, 2, 3, or 4 weeks after vaccination and tested for measles-specific antibodies by an IgM capture enzyme immunoassay (EIA) and by an indirect IgG EIA. A total of 209 of the 224 children who returned for the second visit had prevaccination sera that were both IgM and IgG negative. The postvaccination IgM positivity rates for these 209 children were 2% at 1 week, 61% at 2 weeks, 79% at 3 weeks, and 60% at 4 weeks. The postvaccination IgG positivity rates were 0% at 1 week, 14% at 2 weeks, 81% at 3 weeks, and 85% at 4 weeks. We conclude that an IgM-positive result obtained by this antibody capture EIA is difficult to interpret if serum is collected between 8 days and 8 weeks after vaccination; in this situation, the diagnosis of measles should be based on an epidemiologic linkage to a confirmed case or on the detection of wild-type measles virus.


2018 ◽  
Vol 92 (6) ◽  
Author(s):  
Yuma Sato ◽  
Shumpei Watanabe ◽  
Yoshinari Fukuda ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi ◽  
...  

ABSTRACTMeasles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCEMeasles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


2016 ◽  
Vol 55 (3) ◽  
pp. 686-689 ◽  
Author(s):  
Jill K. Hacker

ABSTRACT Rapid differentiation of vaccine from wild-type strains in suspect measles cases is a valuable epidemiological tool that informs the public health response to this highly infectious disease. Few public health laboratories sequence measles virus-positive specimens to determine genotype, and the vaccine-specific real-time reverse transcriptase PCR (rRT-PCR) assay described by F. Roy et al. (J. Clin. Microbiol. 55:735–743, 2017, https://doi.org/10.1128/JCM.01879-16 ) offers a rapid, easily adoptable method to identify measles vaccine strains in suspect cases.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4242-4247
Author(s):  
T.A. Bayston ◽  
A. Tripodi ◽  
P.M. Mannucci ◽  
E. Thompson ◽  
H. Ireland ◽  
...  

We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.


2009 ◽  
Vol 77 (10) ◽  
pp. 4371-4382 ◽  
Author(s):  
Javier A. Carrero ◽  
Boris Calderon ◽  
Hector Vivanco-Cid ◽  
Emil R. Unanue

ABSTRACT Listeriolysin O (LLO) is an essential virulence factor for the gram-positive bacterium Listeria monocytogenes. Our goal was to determine if altering the topology of LLO would alter the virulence and toxicity of L. monocytogenes in vivo. A recombinant strain was generated that expressed a surface-associated LLO (sLLO) variant secreted at 40-fold-lower levels than the wild type. In culture, the sLLO strain grew in macrophages, translocated to the cytosol, and induced cell death. However, the sLLO strain showed decreased infectivity, reduced lymphocyte apoptosis, and decreased virulence despite a normal in vitro phenotype. Thus, the topology of LLO in L. monocytogenes was a factor in the pathogenesis of the infection and points to a role of LLO secretion during in vivo infection. The sLLO strain was cleared by severe combined immunodeficient (SCID) mice. Despite the attenuation of virulence, the sLLO strain was immunogenic and capable of eliciting protective T-cell responses.


2021 ◽  
Author(s):  
Yukihiko Kubota ◽  
Natsumi Ota ◽  
Hisashi Takatsuka ◽  
Takuma Unno ◽  
Shuichi Onami ◽  
...  

The RNA polymerase II-associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in Pol II-mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO-1, RTFO-1, PAFO-1, CDC-73, and CTR-9, in Caenorhabditis elegans affects cell volume expansion of oocytes. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA-1::GFP. While four to five OMA-1::GFP-positive oocytes were observed in wild-type animals, their numbers were significantly decreased in pafo-1 mutantand leo-1(RNAi), cdc-73(RNAi), and pafo-1(RNAi) animals. Expression of a functional PAFO-1::mCherry transgene in the germline significantly rescued the oogenesis-defective phenotype of the pafo-1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA-1::GFP partially rescued the oogenesis defect in the pafo-1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell-autonomous manner by positively regulating the expression of genes involved in oocyte maturation.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4242-4247 ◽  
Author(s):  
T.A. Bayston ◽  
A. Tripodi ◽  
P.M. Mannucci ◽  
E. Thompson ◽  
H. Ireland ◽  
...  

Abstract We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.


1987 ◽  
Vol 45 (3) ◽  
pp. 375-383 ◽  
Author(s):  
Diane E. Griffin ◽  
Richard T. Johnson ◽  
Victor G. Tamashiro ◽  
Thomas R. Moench ◽  
Enrique Jauregui ◽  
...  

2002 ◽  
Vol 76 (24) ◽  
pp. 13034-13038 ◽  
Author(s):  
Nicolas Massé ◽  
Thomas Barrett ◽  
Claude P. Muller ◽  
T. Fabian Wild ◽  
Robin Buckland

ABSTRACT Natural or wild-type (wt) measles virus (MV) infection in vivo which is restricted to humans and certain monkeys represents an enigma in terms of receptor usage. Although wt MV is known to use the protein SLAM (CD150) as a cell receptor, many human tissues, including respiratory epithelium in which the infection initiates, are SLAM negative. These tissues are CD46 positive, but wt MV strains, unlike vaccinal and laboratory MV strains, are not thought to use CD46 as a receptor. We have identified a novel CD46 binding site at residues S548 and F549, in the hemagglutinin (H) protein from a laboratory MV strain, which is also present in wt H proteins. Our results suggest that although wt MV interacts with SLAM with high affinity, it also possesses the capacity to interact with CD46 with low affinity.


Sign in / Sign up

Export Citation Format

Share Document