scholarly journals Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Matthew W. Frank ◽  
Jiangwei Yao ◽  
Justin L. Batte ◽  
Jessica M. Gullett ◽  
Chitra Subramanian ◽  
...  

ABSTRACT Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either ΔfakA or ΔfakB1 ΔfakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid. IMPORTANCE The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


2008 ◽  
Vol 74 (19) ◽  
pp. 5882-5890 ◽  
Author(s):  
Vineet K. Singh ◽  
Dipti S. Hattangady ◽  
Efstathios S. Giotis ◽  
Atul K. Singh ◽  
Neal R. Chamberlain ◽  
...  

ABSTRACT Staphylococcus aureus is a major community and nosocomial pathogen. Its ability to withstand multiple stress conditions and quickly develop resistance to antibiotics complicates the control of staphylococcal infections. Adaptation to lower temperatures is a key for the survival of bacterial species outside the host. Branched-chain α-keto acid dehydrogenase (BKD) is an enzyme complex that catalyzes the early stages of branched-chain fatty acid (BCFA) production. In this study, BKD was inactivated, resulting in reduced levels of BCFAs in the membrane of S. aureus. Growth of the BKD-inactivated mutant was progressively more impaired than that of wild-type S. aureus with decreasing temperature, to the point that the mutant could not grow at 12�C. The growth of the mutant was markedly stimulated by the inclusion of 2-methylbutyrate in the growth medium at all temperatures tested. 2-Methylbutyrate is a precursor of odd-numbered anteiso fatty acids and bypasses BKD. Interestingly, growth of wild-type S. aureus was also stimulated by including 2-methylbutyrate in the medium, especially at lower temperatures. The anteiso fatty acid content of the BKD-inactivated mutant was restored by the inclusion of 2-methylbutyrate in the medium. Fluorescence polarization measurements indicated that the membrane of the BKD-inactivated mutant was significantly less fluid than that of wild-type S. aureus. Consistent with this result, the mutant showed decreased toluene tolerance that could be increased by the inclusion of 2-methylbutyrate in the medium. The BKD-inactivated mutant was more susceptible to alkaline pH and oxidative stress conditions. Inactivation of the BKD enzyme complex in S. aureus also led to a reduction in adherence of the mutant to eukaryotic cells and its survival in a mouse host. In addition, the mutant offers a tool to study the role of membrane fluidity in the interaction of S. aureus with antimicrobial substances.


2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Zachary DeMars ◽  
Vineet K. Singh ◽  
Jeffrey L. Bose

ABSTRACT Staphylococcus aureus can utilize exogenous fatty acids for phospholipid synthesis. The fatty acid kinase FakA is essential for this utilization by phosphorylating exogenous fatty acids for incorporation into lipids. How FakA impacts the lipid membrane composition is unknown. In this study, we used mass spectrometry to determine the membrane lipid composition and properties of S. aureus in the absence of fakA. We found the fakA mutant to have increased abundance of lipids containing longer acyl chains. Since S. aureus does not synthesize unsaturated fatty acids, we utilized oleic acid (18:1) to track exogenous fatty acid incorporation into lipids. We observed a concentration-dependent incorporation of exogenous fatty acids into the membrane that required FakA. We also tested how FakA and exogenous fatty acids impact membrane-related physiology and identified changes in membrane potential, cellular respiration, and membrane fluidity. To mimic the host environment, we characterized the lipid composition of wild-type and fakA mutant bacteria grown in mouse skin homogenate. We show that wild-type S. aureus can incorporate exogenous unsaturated fatty acids from host tissue, highlighting the importance of FakA in the presence of host skin tissue. In conclusion, FakA is important for maintaining the composition and properties of the phospholipid membrane in the presence of exogenous fatty acids, impacting overall cell physiology. IMPORTANCE Environmental fatty acids can be harvested to supplement endogenous fatty acid synthesis to produce membranes and circumvent fatty acid biosynthesis inhibitors. However, how the inability to use these fatty acids impacts lipids is unclear. Our results reveal lipid composition changes in response to fatty acid addition and when S. aureus is unable to activate fatty acids through FakA. We identify concentration-dependent utilization of oleic acid that, when combined with previous work, provides evidence that fatty acids can serve as a signal to S. aureus. Furthermore, using mouse skin homogenates as a surrogate for in vivo conditions, we showed that S. aureus can incorporate host fatty acids. This study highlights how exogenous fatty acids impact bacterial membrane composition and function.


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Zachary DeMars ◽  
Jeffrey L. Bose

ABSTRACTStaphylococcus aureusis capable of phosphorylating exogenous fatty acids for incorporation into the bacterium's membrane via the fatty acid kinase, FakA. Additionally, FakA plays a significant role in virulence factor regulation and skin infections. We previously showed that afakAmutant displays altered growth kineticsin vitro, observed during the late-exponential phase of growth. Here, we demonstrate that the absence of FakA leads to key metabolic changes. First, thefakAmutant has an altered acetate metabolism, with acetate being consumed at an increased rate than in the wild-type strain. Moreover, the growth benefit was diminished with inactivation of the acetate-generating enzyme AckA. Using a mass spectrometry-based approach, we identified altered concentrations of tricarboxylic acid (TCA) cycle intermediates and both intracellular and extracellular amino acids. Together, these data demonstrate a change in carbohydrate carbon utilization and altered amino acid metabolism in thefakAmutant. Energy status analysis revealed the mutant had a similar ADP/ATP ratio to that of the wild type, but a reduced adenylate energy charge. The inactivation offakAchanged the NAD+/NADH and NADP+/NADPH ratios, indicating a more oxidized cellular environment. Evidence points to the global metabolic regulatory proteins CcpA and CodY being important contributors to the altered growth in afakAmutant. Indeed, it was found that directing amino acids from the urea cycle into the TCA cycle via glutamate dehydrogenase was an essential component ofS. aureusgrowth after glucose depletion. Together, these data identify a previously unidentified role of FakA in the global physiology ofS. aureus, linking external fatty acid utilization and central metabolism.IMPORTANCEThe fatty acid kinase, FakA, ofStaphylococcus aureusplays several important roles in the cell. FakA is important for the activation of the SaeRS two-component system and secreted virulence factors like α-hemolysin. However, the contribution of FakA to cellular metabolism has not been explored. Here, we highlight the metabolic consequence of removal of FakA from the cell. The absence of FakA leads to altered acetate metabolism and altered redox balance, as well as a change in intracellular amino acids. Additionally, the use of environmental amino acid sources is affected by FakA. Together, these results demonstrate for the first time that FakA provides a link between the pathways for exogenous fatty acid use, virulence factor regulation, and other metabolic processes.


2013 ◽  
Vol 79 (23) ◽  
pp. 7360-7370 ◽  
Author(s):  
John Seip ◽  
Raymond Jackson ◽  
Hongxian He ◽  
Quinn Zhu ◽  
Seung-Pyo Hong

ABSTRACTIn the oleaginous yeastYarrowia lipolytica,de novolipid synthesis and accumulation are induced under conditions of nitrogen limitation (or a high carbon-to-nitrogen ratio). The regulatory pathway responsible for this induction has not been identified. Here we report that the SNF1 pathway plays a key role in the transition from the growth phase to the oleaginous phase inY. lipolytica. Strains with aY. lipolyticasnf1(Ylsnf1) deletion accumulated fatty acids constitutively at levels up to 2.6-fold higher than those of the wild type. When introduced into aY. lipolyticastrain engineered to produce omega-3 eicosapentaenoic acid (EPA),Ylsnf1deletion led to a 52% increase in EPA titers (7.6% of dry cell weight) over the control. Other components of theY. lipolyticaSNF1 pathway were also identified, and their function in limiting fatty acid accumulation is suggested by gene deletion analyses. Deletion of the gene encoding YlSnf4, YlGal83, or YlSak1 significantly increased lipid accumulation in both growth and oleaginous phases compared to the wild type. Furthermore, microarray and quantitative reverse transcription-PCR (qRT-PCR) analyses of theYlsnf1mutant identified significantly differentially expressed genes duringde novolipid synthesis and accumulation inY. lipolytica. Gene ontology analysis found that these genes were highly enriched with genes involved in lipid metabolism. This work presents a new role for Snf1/AMP-activated protein kinase (AMPK) pathways in lipid accumulation in this oleaginous yeast.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tianyi Wang ◽  
Song Huang ◽  
Xiao Han ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
...  

Objective Obesity is becoming increasingly prevalent and is an important contributor to the worldwide burden of diseases. It is widely accepted that exercise training is beneficial for the prevention and treatment of obesity. However, the underlying mechanism by which exercise training improving skeletal muscle lipid metabolism is still not fully described. Sestrins (Sestrin1-3) are highly conserved stress-inducible protein. Concomitant ablation of Sestrin2 and Sestrin3 has been reported to provoke hepatic mTORC1/S6K1 activation and insulin resistance even without nutritional overload and obesity, implicating that Sestrin2 and Sestrin3 have an important homeostatic function in the control of mammalian glucose and lipid metabolism. Our previous results demonstrated that physical exercise increased Sestrin2 expression in murine skeletal muscle, while the role of Sestrin2 in regulating lipid metabolism remains unknown.  SH2 domain containing inositol 5-phosphatase (SHIP2) acts as a negative regulator of the insulin signaling both in vitro and in vivo. An increased expression of SHIP2 inhibits the insulin-induced Akt activation, glucose uptake, and glycogen synthesis in 3T3-L1 adipocytes, L6 myotubes and tissues of animal models. Alterations of SHIP2 expression and/or enzymatic function appear to have a profound impact on the development of insulin resistance. However, the regulatory function of SHIP2 in lipid metabolism after exercise remains unclear. It has been reported that SHIP2 modulated lipid metabolism through regulating the activity of c-Jun N-terminal kinase (JNK) and Sterol regulatory element-binding protein-1 (SREBP-1). JNK is a subclass of mitogen-activated protein kinase (MAPK) signaling pathway in mammalian cells and plays a crucial role in metabolic changes and inflammation associated with a high-fat diet. Inhibition of JNK reduces lipid deposition and proteins level of fatty acid de novo synthesis in liver cells. It has been reported that Sestrin2 regulated the phosphorylation of JNK, however the underlying mechanism remains unclear. SREBP-1 is important in regulating cholesterol biosynthesis and uptake and fatty acid biosynthesis, and SREBP-1 expression produces two different isoforms, SREBP-1a and SREBP-1c. SREBP-1c is responsible for regulating the genes required for de novo lipogenesis and its expression is regulated by insulin. SREBP-1a regulates genes related to lipid and cholesterol production and its activity is regulated by sterol levels in the cell. Altogether, the purpose of this study was to explore the effect and underlying mechanism of Sestrin2 on lipid accumulation after exercise training. Methods Male wild type and SESN2−/− mice were divided into normal chow (NC) and high-fat diet (HFD) groups to create insulin resistance mice model. After 8 weeks the IR model group was then divided into HFD sedentary control and HFD exercise groups (HE). Mice in HE group underwent 6-week treadmill exercise to reveal the effect of exercise training on lipid metabolism in insulin resistance model induced by HFD. We explored the mechanism through which Sestrin2 regulated lipid metabolism in vitro by supplying palmitate, overexpressing or inhibiting SESNs, SHIP2 and JNK in myotubes. Results We found that 6-week exercise training decreased body weight, BMI and fat mass in wild type and SESN2-/- mice after high-fat diet (HFD) feeding. And exercise training decreased the level of plasma glucose, serum insulin, triglycerides and free fatty acids in wild type but not in Sestrin2-/- mice. Lipid droplet in skeletal muscle was also decreased in wild type but did not in Sestrin2-/- mice. Moreover, exercise training increased the proteins expression involved in fatty acid oxidation and decreased the proteins which related to fatty acid de novo synthesis. The results of oil red staining and the change of proteins related to fatty acid de novo synthesis and beta oxidation in myotubes treated with palmitate, Ad-SESN2 and siRNA-Sestrin2 were consisted with the results in vivo, which suggested that Sestrin2 was a key regulator in lipid metabolism. Exercise training increased Sestrin2 expression and reversed up-regulation of SHIP2 and pJNK induced by HFD in wild type mice but not in Sestrin2-/- mice. In parallel, overexpression of Sestrin2 decreased the level of SHIP2 and pJNK induced by palmitate while Sestrin2 knock down by siRNA-Sestrin2 treatment did not change the expression of SHIP2 and pJNK, which suggested that Sestrin2 modulated SHIP2 and JNK in the state of abnormal lipid metabolism. Inhibition of SHIP2 reduced the activity of JNK, increased lipid accumulation and the proteins of fatty acid synthesis after palmitate treatment and over expression of Sestrin2, which suggest that Sestrin2 modulated lipid metabolism through SHIP2/JNK pathway. Conclusions Sestrin2 plays an important role in improving lipid metabolism after exercise training, and Sestrin2 regulates lipid metabolism by SHIP2-JNK pathway in skeletal muscle.


2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Savitha Nadig ◽  
Sneha Murthy ◽  
Muralidharan Vandanashree ◽  
Hosahalli S. Subramanya ◽  
Balasubramanian Gopal ◽  
...  

ABSTRACT We report a de novo-assembled draft genome sequence of the Indian Staphylococcus aureus sequence type 88 (ST88) strain LVP-7, isolated from an ocular infection. The genome harbors a Panton-Valentine leukocidin phage, a type V staphylococcal cassette chromosome mec element, the delta-hemolysin-converting Newman phage ΦNM3, and the pathogenicity island SaPI3, encoding the superantigen enterotoxin B.


2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi169-vi169
Author(s):  
Kevin Murnan ◽  
Serena Tommasini-Ghelfi ◽  
Lisa Hurley ◽  
Corey Dussold ◽  
Daniel Wahl ◽  
...  

Abstract Increased de novo synthesis, mobilization and uptake of fatty acids are required to provide sufficient lipids for membrane biogenesis in support of rapid tumor cell division and growth. In addition to their structural roles as components of the plasma membrane, fatty acid-derived lipids regulate ferroptotic cell death, a type of programmed cell death, when oxidized by iron-dependent lipoxygenase enzymes. De novo lipogenesis and the defense against oxidative lipid damage require large amounts of cytosolic NADPH. Our group has recently found that HGG up-regulate wild-type Isocitrate dehydrogenase 1 (referred to hereafter as ‘wt-IDH1high HGG’) to generate large quantities of cytosolic NADPH. RNAi-mediated knockdown of wt-IDH1, alone and in combination with radiation therapy (RT), slows the growth of patient-derived HGG xenografts, while overexpression of wt-IDH1 promotes intracranial HGG growth. Isotope tracer and liquid chromatography-based lipidomic studies indicated that wt-IDH1 supports the de novo biosynthesis of mono-unsaturated fatty acids (MUFAs) and promotes the incorporation of monounsaturated phospholipids into the plasma membrane, while displacing polyunsaturated fatty acid (PUFA) phospholipids. In addition, enhanced NADPH production in wt-IDH1high HGG increases glutathione (GSH) level, reduces reactive oxygen species (ROS), activates the phospholipid peroxidase glutathione peroxidase 4 (GPX4)-driven lipid repair pathway, and dampens the accumulation of PUFA-containing lipid peroxides, known executioners of ferroptosis. To pharmacologically target wt-IDH1,we have used and characterized wt-IDH1i-13, a first-in-class competitive α,β-unsaturated enone (AbbVie). wt-IDH1i-13 potently inhibits wt-IDH1 enzymatic activity, by covalently binding to the NADP+ binding pocket. Our data indicate that wt-IDH1i-13 promotes ferroptosis, which can be rescued by pre-treatment of cells with the peroxyl scavenger and ferroptosis inhibitor ferrostatin. wt-IDH1i-13 is brain-penetrant, and similar to genetic ablation, reduces progression and extends the survival of wt-IDH1high HGG bearing mice, alone and in combination with RT. These studies credential to wt-IDH1i-13 as a novel therapeutic modality for the treatment of wt-IDH1 gliomas.


Sign in / Sign up

Export Citation Format

Share Document