scholarly journals The Histone Code of Toxoplasma gondii Comprises Conserved and Unique Posttranslational Modifications

mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Sheila C. Nardelli ◽  
Fa-Yun Che ◽  
Natalie C. Silmon de Monerri ◽  
Hui Xiao ◽  
Edward Nieves ◽  
...  

ABSTRACT Epigenetic gene regulation has emerged as a major mechanism for gene regulation in all eukaryotes. Histones are small, basic proteins that constitute the major protein component of chromatin, and posttranslational modifications (PTM) of histones are essential for epigenetic gene regulation. The different combinations of histone PTM form the histone code for an organism, marking functional units of chromatin that recruit macromolecular complexes that govern chromatin structure and regulate gene expression. To characterize the repertoire of Toxoplasma gondii histone PTM, we enriched histones using standard acid extraction protocols and analyzed them with several complementary middle-down and bottom-up proteomic approaches with the high-resolution Orbitrap mass spectrometer using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and/or electron transfer dissociation (ETD) fragmentation. We identified 249 peptides with unique combinations of PTM that comprise the T. gondii histone code. T. gondii histones share a high degree of sequence conservation with human histones, and many modifications are conserved between these species. In addition, T. gondii histones have unique modifications not previously identified in other species. Finally, T. gondii histones are modified by succinylation, propionylation, and formylation, recently described histone PTM that have not previously been identified in parasitic protozoa. The characterization of the T. gondii histone code will facilitate in-depth analysis of how epigenetic regulation affects gene expression in pathogenic apicomplexan parasites and identify a new model system for elucidating the biological functions of novel histone PTM. IMPORTANCE Toxoplasma gondii is among the most common parasitic infections in humans. The transition between the different stages of the T. gondii life cycle are essential for parasite virulence and survival. These differentiation events are accompanied by significant changes in gene expression, and the control mechanisms for these transitions have not been elucidated. Important mechanisms that are involved in the control of gene expression are the epigenetic modifications that have been identified in several eukaryotes. T. gondii has a full complement of histone-modifying enzymes, histones, and variants. In this paper, we identify over a hundred PTM and a full repertoire of PTM combinations for T. gondii histones, providing the first large-scale characterization of the T. gondii histone code and an essential initial step for understanding how epigenetic modifications affect gene expression and other processes in this organism.

2010 ◽  
Vol 9 (8) ◽  
pp. 1138-1149 ◽  
Author(s):  
Liwang Cui ◽  
Jun Miao

ABSTRACT Malaria is a major public health problem in many developing countries, with the malignant tertian parasite Plasmodium falciparum causing the most malaria-associated mortality. Extensive research, especially with the advancement of genomics and transfection tools, has highlighted the fundamental importance of chromatin-mediated gene regulation in the developmental program of this early-branching eukaryote. The Plasmodium parasite genomes reveal the existence of both canonical and variant histones that make up the nucleosomes, as well as a full collection of conserved enzymes for chromatin remodeling and histone posttranslational modifications (PTMs). Recent studies have identified a wide array of both conserved and novel histone PTMs in P. falciparum, indicating the presence of a complex and divergent “histone code.” Genome-wide analysis has begun to decipher the nucleosome landscape and histone modifications associated with the dynamic organization of chromatin structures during the parasite's life cycle. Focused studies on malaria-specific phenomena such as antigenic variation and red cell invasion pathways shed further light on the involvement of epigenetic mechanisms in these processes. Here we review our current understanding of chromatin-mediated gene regulation in malaria parasites, with specific reference to exemplar studies on antigenic variation and host cell invasion.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Armond L. Franklin-Murray ◽  
Sharmila Mallya ◽  
Allen Jankeel ◽  
Suhas Sureshchandra ◽  
Ilhem Messaoudi ◽  
...  

ABSTRACT Toxoplasma gondii can infect and replicate in vascular endothelial cells prior to entering host tissues. However, little is known about the molecular interactions at the parasite-endothelial cell interface. We demonstrate that T. gondii infection of primary human umbilical vein endothelial cells (HUVEC) altered cell morphology and dysregulated barrier function, increasing permeability to low-molecular-weight polymers. T. gondii disrupted vascular endothelial cadherin (VE-cadherin) and β-catenin localization to the cell periphery and reduced VE-cadherin protein expression. Notably, T. gondii infection led to reorganization of the host cytoskeleton by reducing filamentous actin (F-actin) stress fiber abundance under static and microfluidic shear stress conditions and by reducing planar cell polarity. RNA sequencing (RNA-Seq) comparing genome-wide transcriptional profiles of infected to uninfected endothelial cells revealed changes in gene expression associated with cell-cell adhesion, extracellular matrix reorganization, and cytokine-mediated signaling. In particular, genes downstream of Hippo signaling and the biomechanical sensor and transcriptional coactivator Yes-associated protein (YAP) were downregulated in infected endothelial cells. Interestingly, T. gondii infection activated Hippo signaling by increasing phosphorylation of LATS1, leading to cytoplasmic retention of YAP, and reducing YAP target gene expression. These findings suggest that T. gondii infection triggers Hippo signaling and YAP nuclear export, leading to an altered transcriptional profile of infected endothelial cells. IMPORTANCE Toxoplasma gondii is a foodborne parasite that infects virtually all warm-blooded animals and can cause severe disease in individuals with compromised or weakened immune systems. During dissemination in its infected hosts, T. gondii breaches endothelial barriers to enter tissues and establish the chronic infections underlying the most severe manifestations of toxoplasmosis. The research presented here examines how T. gondii infection of primary human endothelial cells induces changes in cell morphology, barrier function, gene expression, and mechanotransduction signaling under static conditions and under the physiological conditions of shear stress found in the bloodstream. Understanding the molecular interactions occurring at the interface between endothelial cells and T. gondii may provide insights into processes linked to parasite dissemination and pathogenesis.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Min-Jeong Kim ◽  
Hyun-Gyun Yuk

ABSTRACT The aim of this study was to elucidate the antibacterial mechanism of 405 ± 5-nm light-emitting diode (LED) illumination against Salmonella at 4°C in phosphate-buffered saline (PBS) by determining endogenous coproporphyrin content, DNA oxidation, damage to membrane function, and morphological change. Gene expression levels, including of oxyR, recA, rpoS, sodA, and soxR, were also examined to understand the response of Salmonella to LED illumination. The results showed that Salmonella strains responded differently to LED illumination, revealing that S. enterica serovar Enteritidis (ATCC 13076) and S. enterica subsp. enterica serovar Saintpaul (ATCC 9712) were more susceptible and resistant, respectively, than the 16 other strains tested. There was no difference in the amounts of endogenous coproporphyrin in the two strains. Compared with that in nonilluminated cells, the DNA oxidation levels in illuminated cells increased. In illuminated cells, we observed a loss of efflux pump activity, damage to the glucose uptake system, and changes in membrane potential and integrity. Transmission electron microscopy revealed a disorganization of chromosomes and ribosomes due to LED illumination. The levels of the five genes measured in the nonilluminated and illuminated S. Saintpaul cells were upregulated in PBS at a set temperature of 4°C, indicating that increased gene expression levels might be due to a temperature shift and nutrient deficiency rather than to LED illumination. In contrast, only oxyR in S. Enteritidis cells was upregulated. Thus, different sensitivities of the two strains to LED illumination were attributed to differences in gene regulation. IMPORTANCE Bacterial inactivation using visible light has recently received attention as a safe and environmentally friendly technology, in contrast with UV light, which has detrimental effects on human health and the environment. This study was designed to understand how 405 ± 5-nm light-emitting diode (LED) illumination kills Salmonella strains at refrigeration temperature. The data clearly demonstrated that the effectiveness of LED illumination on Salmonella strains depended highly on the serotype and strain. Our findings also revealed that its antibacterial mechanism was mainly attributed to DNA oxidation and a loss of membrane functions rather than membrane lipid peroxidation, which has been proposed by other researchers who studied the antibacterial effect of LED illumination by adding exogenous photosensitizers, such as chlorophyllin and hypericin. Therefore, this study suggests that the detailed antibacterial mechanisms of 405-nm LED illumination without additional photosensitizers may differ from that by exogenous photosensitizers. Furthermore, a change in stress-related gene regulation may alter the susceptibility of Salmonella cells to LED illumination at refrigeration temperature. Thus, our study provides new insights into the antibacterial mechanism of 405 ± 5-nm LED illumination on Salmonella cells.


2012 ◽  
Vol 78 (7) ◽  
pp. 2100-2105 ◽  
Author(s):  
Dorthe Kixmüller ◽  
Jörg-Christian Greie

ABSTRACTGradually inducible expression vectors which are governed by variations of growth conditions are powerful tools for gene expression of conditionally lethal mutants. Furthermore, controlled expression allows monitoring of overproduction of proteins at various stages in their expressing hosts. ForHalobacterium salinarum, which is often used as a paradigm for halophilic archaea, such an inducible expression system is not available to date. Here we show that thekdppromoter (Pkdp), which facilitates gene expression upon K+limitation, can be used to establish such a system for molecular applications. Pkdpfeatures a rather high expression rate, with an approximately 50-fold increase that can be easily varied by K+concentrations in the growth medium. Besides the construction of an expression vector, our work describes the characterization of expression patterns and, thus, offers a gradually inducible expression system to the scientific community.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Olga Ramaniuk ◽  
Martin Převorovský ◽  
Jiří Pospíšil ◽  
Dragana Vítovská ◽  
Olga Kofroňová ◽  
...  

ABSTRACTThe σIsigma factor fromBacillus subtilisis a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI. Further analysis revealed that the majority of these genes were affected indirectly by σI. The σIregulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (thedhbandykuoperons) are involved in iron metabolism. The involvement of σIin iron metabolism was confirmed phenotypically. Next, we set up anin vitrotranscription system and defined and experimentally validated the promoter sequence logo that, in addition to −35 and −10 regions, also contains extended −35 and −10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organismB. subtilis.IMPORTANCEIn bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σIregulon from the industrially important model Gram-positive bacteriumBacillus subtilis. We reveal that σIaffects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of theB. subtilistranscription machinery.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Sherri Huang ◽  
Michael J. Holmes ◽  
Joshua B. Radke ◽  
Dong-Pyo Hong ◽  
Ting-Kai Liu ◽  
...  

ABSTRACT Toxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite. Toxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction—a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCE Toxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite.


2012 ◽  
Vol 56 (8) ◽  
pp. 4422-4427 ◽  
Author(s):  
Warren E. Rose ◽  
Michael Fallon ◽  
John J. M. Moran ◽  
Joshua P. Vanderloo

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) isolates that are susceptible to vancomycin but are tolerant to its killing effect may present a potential challenge for effective treatment. This study compared the microbiologic characteristics of clinical vancomycin-tolerant (VT-MRSA) and vancomycin-susceptible (VS-MRSA) strains using phenotypic and gene regulation studies. MRSA isolates collected from vancomycin-treated patients with bacteremia over a 5-year period were analyzed for vancomycin, daptomycin, and telavancin susceptibility, as well as accessory gene regulator (agr) group and function. Vancomycin tolerance was defined by a minimum bactericidal concentration (MBC)/minimum inhibitor concentration (MIC) ratio of ≥32 mg/liter. VT-MRSA isolates were compared to VS-MRSA isolates for differences in antimicrobial susceptibility, time-kill activity, and gene expression of key cell envelope response genesvraSR,dltA, andmprF. All 115 isolates evaluated were susceptible to vancomycin, daptomycin, and telavancin. Seven isolates (6%) were VT-MRSA.agrgroup II was more prevalent in isolates with vancomycin MBC/MIC ratios of ≥8. In time-kill analyses, VT-MRSA had reduced vancomycin killing, but daptomycin and telavancin activities were maintained. Significantly greater gene expression was observed in VT-MRSA after 72 h of subinhibitory antibiotic exposures. Vancomycin most notably increasedvraSRexpression (P= 0.002 versus VS-MRSA strains). Daptomycin and telavancin increased expression of all genes studied, most significantlymprFexpression (P< 0.001). Longer durations of antibiotic exposure (72 h versus 24 h) resulted in substantial increases in gene expression in VT-MRSA. Although the clinical impact of VT-MRSA is not fully recognized, these data suggest that VT-MRSA strains, while still susceptible, have altered gene regulation to adapt to the antimicrobial effects of glyco- and lipopeptides that may emerge during prolonged durations of exposure.


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Amber B. Sauder ◽  
Melissa M. Kendall

ABSTRACTTo adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagicEscherichia coli(EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.


2010 ◽  
Vol 70 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Rebecca Simmons

Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.


Sign in / Sign up

Export Citation Format

Share Document